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Abstract: Regional conservation planning increasingly draws on habitat suitability models to support de-

cisions regarding land allocation and management. Nevertheless, statistical techniques commonly used for

developing such models may give misleading results because they fail to account for 3 factors common in

data sets of species distribution: spatial autocorrelation, the large number of sites where the species is absent

(zero inflation), and uneven survey effort. We used spatial autoregressive models fit with Bayesian Markov

Chain Monte Carlo techniques to assess the relationship between older coniferous forest and the abundance

of Northern Spotted Owl nest and activity sites throughout the species’ range. The spatial random-effect term

incorporated in the autoregressive models successfully accounted for zero inflation and reduced the effect

of survey bias on estimates of species–habitat associations. Our results support the hypothesis that the re-

lationship between owl distribution and older forest varies with latitude. A quadratic relationship between

owl abundance and older forest was evident in the southern portion of the range, and a pseudothreshold

relationship was evident in the northern portion of the range. Our results suggest that proposed changes to

the network of owl habitat reserves would reduce the proportion of the population protected by up to one-

third, and that proposed guidelines for forest management within reserves underestimate the proportion of

older forest associated with maximum owl abundance and inappropriately generalize threshold relationships

among subregions. Bayesian spatial models can greatly enhance the utility of habitat analysis for conserva-

tion planning because they add the statistical flexibility necessary for analyzing regional survey data while

retaining the interpretability of simpler models.
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La Importancia de Ser Espacial (y Reservado): Evaluación de las Relaciones del Hábitat del Búho Strix occidentalis

con Modelos Bayesianos Jerárquicos

Resumen: Cada vez más, la planificación regional de la conservación utiliza modelos de aptitud de hábitat

para sostener las decisiones relacionadas con la adjudicación y manejo de tierras. Sin embargo, las técnicas

estadı́sticas utilizadas comúnmente para desarrollar dichos modelos pueden producir resultados engañosos

porque no toman en cuenta 3 factores comunes en los conjuntos de datos de la distribución de especies: auto-

correlación espacial, la gran cantidad de sitios donde la especie está ausente (inflación cero) y un esfuerzo de

muestreo desigual. Utilizamos modelos espaciales autoregresivos adaptados con técnicas Bayesianas Cadena

Markov Monte Carlo para evaluar la relación entre el bosque de conı́feras viejo y la abundancia de nidos

del búho Strix occidentalis y sitios de actividad en el área de distribución de la especie. El término espacial

de efecto aleatorio incorporado a los modelos autoregresivos explicó la inflación cero exitosamente y redujo

el efecto del sesgo de muestreo sobre estimaciones de las asociaciones especie-hábitat. Nuestros resultados

sustentan la hipótesis de que la relación entre la distribución del búho y el bosque viejo vaŕıa con la latitud.
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Una relación cuadrática entre la abundancia de búhos y el bosque viejo fue evidente en la porción sur del

área de distribución y una relación pseudo umbral fue evidente en la porción norte. Nuestros resultados

sugieren que los cambios propuestos a la red de reservas de hábitat de S. occidentalis reduciŕıan, hasta en un

tercio, la proporción de la población protegida, y que las directrices propuestas para el manejo del bosque

dentro de las reservas subestiman la proporción de bosque viejo asociado con la máxima abundancia de

búhos e inadecuadamente generalizan relaciones umbral entre las subregiones. Los modelos Bayesianos es-

paciales pueden resaltar la utilidad del análisis de hábitat para la planificación de la conservación porque

agregan la flexibilidad estadı́stica necesaria para analizar datos de muestreos regionales y mantienen la

interpretabilidad de modelos más simples.

Palabras Clave: búho, especies focales, inferencia Bayesiana, modelos de distribución de especies, Plan Forestal
del Noroeste, relaciones del hábitat, Strix occidentalis

Introduction

Habitat models aid conservation planning because they
increase understanding of factors limiting species distri-
bution, facilitate the development of guidelines for habi-
tat protection, and help evaluate suitability of unsurveyed
or currently unoccupied areas. Nevertheless, statistical
techniques commonly used for developing such models
may give misleading results because they fail to account
for factors common in data sets of species distribution:
spatial autocorrelation, the large number of sites where
the species is absent (zero inflation), and uneven survey
effort. To address these factors and develop an example
of new techniques with wide applicability in habitat mod-
eling, we applied hierarchical Bayesian spatial models to
evaluate habitat relationships and conservation options
for the Northern Spotted Owl (Strix occidentalis cau-

rina), which has served as a de facto “umbrella” species
for conserving the community of species associated with
older forests in the Pacific Northwest (USA) (Noon &
Blakesley 2006).

The Northern Spotted Owl (henceforth referred to as
“the owl”) was listed in 1990 as a threatened species un-
der the U.S. Endangered Species Act (ESA) due to declin-
ing population trends related to the loss of older conifer-
ous forest habitat to timber harvest (USFWS 1992). The
Northwest Forest Plan (NFP), initiated in 1994, sought
to ensure viable populations of the owl and other old-
growth–associated species by coordinating regional habi-
tat management across multiple ownerships encompass-
ing the range of the owl within the United States (Noon &
Blakesley 2006). The NFP based its guidelines for the size
and spacing of habitat reserves primarily on simulation
models of owl viability that elucidated general reserve-
design rules without reference to data on the current dis-
tribution of older forest habitat (Noon & Blakesley 2006).

Before the advent of the NFP, forested federal lands in
the region were divided between congressional reserves
(e.g., parks and wilderness areas) and nonreserved lands
generally open to timber harvest. With the listing of the
owl, previously unreserved lands that were thought to

be necessary for owl persistence were designated “crit-
ical habitat” as required under the ESA. The NFP sub-
sequently created an additional management category,
late-successional reserves, of similar total area as con-
gressional reserves, where only limited timber harvest
was allowed. Subsequent recovery plans propose replac-
ing the NFP’s management designations with a modified
reserve network (USFWS 2007). Two alternative reserve
networks, managed owl conservation areas (option 1)
and habitat blocks (option 2), are under consideration
(USFWS 2007).

Although the owl’s survival and fecundity has been
examined within intensive demographic study areas
(Franklin et al. 2000; Olson et al. 2004; Dugger et al. 2005;
Anthony et al. 2006), the relationship between habitat
and owl persistence at broader spatial scales remains
a subject of debate, due in part to uncertainty regard-
ing the effects of latitudinal variation in prey community
composition. Most researchers have found that annual
survival rate is positively correlated with the amount of
old-growth forest within the vicinity of nest sites (Noon
& Blakesley 2006). Nevertheless, results of studies in the
southern portion of the range, where woodrat (Neotoma

fuscipes) is the primary prey, suggest that edge habitat
between early- and late-seral forest stands may increase
woodrat abundance, prey availability to owls, and owl
fecundity (Franklin et al. 2000). This relationship may
not occur in the northern portion of the range, where
old-forest–associated prey species such as northern fly-
ing squirrel (Glaucomys sabrinus) dominate the owl’s
diet (Forsman et al. 1984). Recent recovery planning for
the owl proposes major changes in land allocation and
management guidelines on the basis of the assumption
that the role of a territory as source habitat is maximized
throughout the owl’s range at intermediate proportions
of older forest (USFWS 2007). Because demographic data
are too expensive to collect throughout the range of a
species, rangewide habitat models are a key tool with
which to evaluate this assumption and compare the ef-
ficacy of alternate reserve allocations in protecting high-
quality habitat.
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Based on a range-wide analysis, vegetation in the 2-ha
neighborhoods surrounding owl nest sites have higher
conifer tree size and canopy closure, greater complexity
of stand structure, and lower canopy closure of decidu-
ous trees than the landscape as whole (Davis & Lint 2005).
Nevertheless, statistical techniques commonly used for
developing species distribution models, such as logistic
regression and the Biomapper software used by Davis and
Lint (2005), may be poorly suited for the analysis of spa-
tially autocorrelated survey data. Sites that are near one
another often have more-similar abundance values than
widely separated sites, due to biological processes such as
dispersal that tend to result in aggregated distributions or
to spatial autocorrelation of environmental factors (Clark
2007). Such spatially autocorrelated data violate the as-
sumption of independence in standard statistical tests,
which could lead to inclusion of nonsignificant variables,
poor interpretability of model structure and coefficients,
and a lack of general applicability to new areas or novel
future conditions.

Spatial autoregressive models attempt to overcome
these problems by fitting a model that may contain both
environmental covariates and a spatial random effect
(Gelman et al. 2004). The presence of a spatial random
effect component (ρ) allows response values at a site
to depend on the sites’ characteristics and the influence
of values at neighboring sites, thus incorporating local
habitat factors and spatial (e.g., metapopulation) effects
(Latimer et al. 2006). Such spatial models also help ad-
dress problems of survey bias inherent in “found” data
(i.e., collected without an overall randomized or system-
atic sampling design). Spatial autoregressive models are
generally more robust to geographical survey bias be-
cause such bias can be incorporated within the ρ term,
thus reducing its influence on estimation of the effects
of environmental variables. Survey data also often show
a higher proportion of sites with zero values (where the
species is absent) than is expected by standard statistical
distributions (such as the Poisson for count data) (Mar-
tin et al. 2005). This may occur when suitable habitat is
rare or the species does not occupy all suitable habitats
due to stochastic processes. Alternate models such as the
negative binomial and zero-inflated Poisson have been
used to avoid problems of poor fit and underestimation
of model uncertainty with zero-inflated data (Martin et al.
2005).

Spatial autoregressive models, although challenging for
standard statistical software, can be fit with Bayesian
Markov Chain Monte Carlo (MCMC) techniques (e.g., as
implemented by WinBUGS [Spiegelhalter et al. 2003]).
Nevertheless, MCMC models carry substantial costs in
computational time and complexity. By comparing spa-
tial models with nonspatial analogues, we sought to pro-
vide guidance as to when such spatial modeling is neces-
sary and what additional information is provided by such
models.

Methods

Study Area and Survey Data

The study area encompassed the U.S. range of the North-
ern Spotted Owl, which stretches from the Cascade
Range to the Pacific Ocean in Washington and Oregon
and covers portions of northwestern California (Noon &
Blakesley 2006). We excluded the extreme southern por-
tion of the range for which we lacked vegetation data.
We derived locations of owl nest sites or activity centers
(henceforth owl sites) from digital databases provided
by federal and state agencies (Davis & Lint 2005; Califor-
nia Department of Fish and Game [CDFG], unpublished
data). Locations had been collected from the late 1980s
through 2000 for Oregon and Washington and from 1974
through 2006 for California. Standardized survey proto-
cols were used to collect data to determine owl occu-
pancy and reproductive status, with 71.7, 22.0, and 6.3%
of the owl sites located within U.S. Forest Service, Bu-
reau of Land Management, and other public and private
lands, respectively (USFS 1988). Although survey effort
was among the largest for any ESA-listed species, surveys
occurred primarily during the planning process for activi-
ties such as timber harvest that potentially would disturb
owls, on private lands and those federal lands open to
such activities (i.e., lands not within parks or wilderness
areas), and within long-term demographic study areas
established as part of the NFP’s monitoring program (An-
thony et al. 2006). Survey data were available from all ju-
risdictions within California. In Oregon and Washington,
the data set was as used in Davis and Lint (2005), with the
exception that sites from lands not within Forest Service
or Bureau of Land Management land (approximately 10%
of the locations) were not available due to confidentiality
restrictions. This data gap was addressed by inclusion of
a variable representing management jurisdiction as de-
scribed later.

Vegetation Data

We used data on conifer forest age class developed
through classification of Landsat Thematic Mapper satel-
lite imagery (Strittholt et al. 2006). We structured our set
of candidate models to provide comparability with earlier
research that addressed the relationship between owl oc-
currence and old-growth habitat (Zabel et al. 2003). Our
predictor variables were the proportion of old conifer for-
est (>150 years) and mature conifer forest (50–150 years)
within an analysis unit. This proportion was measured for
habitat-capable lands only, following the methodology of
Davis and Lint (2005), which excluded from considera-
tion lands that could not sustain closed-canopy conifer
forest (e.g., barren rock or serpentine) or above the
elevation zone inhabited by the owl. We did not ex-
plore candidate models containing a larger set of envi-
ronmental variables (e.g., climate) because we wished to
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maintain comparability with previous work (Zabel et al.
2003; Davis & Lint 2005) and assess relationships be-
tween owl distribution and older forest with a highly
interpretable and generalizable model.

Modeling Methodology

Wildlife distribution models are commonly based on a
form of generalized linear model (GLM; McCullagh &
Nelder 1989). Counts such as the owl site data we used
can be modeled with a GLM with a log link, the Poisson
model. Spatial autoregressive models build on the GLM
framework through the addition of a spatial random ef-
fect, ρ. One form of spatial autoregressive model, the
intrinsic conditional autoregressive (ICAR) model, makes
the simplifying assumption that the spatial random effect
in cell i depends only on the neighboring cells of i (Ni),
and that all such neighbors have equal influence (weight
of 1) (Gelman et al. 2004). The model is defined as fol-
lows. If yi is the measured distribution variable (here
abundance) at site i, then yi is distributed as a Poisson
variable with mean λi = exp{ηi}, where ηi = β0 + β1x1i

× . . .+ βpxpi + ρi. The variables x1i,. . ., xpi are site-
specific environmental covariates and the ρi are jointly
distributed as a multivariate normal ICAR spatial model.
The ICAR is defined by the conditional normal distribu-
tions ρi ∼ N(μi,σ2/ni), where

μi = 1

ni

∑

j∈Ni

ρ j

and ni is the number of adjacent cells. Because we used a
first-order neighborhood and hexagonal cells, Ni indexed
the 6 immediately adjacent cells. We tested the adequacy
of the first-order neighborhood by testing residuals from
spatial and nonspatial models for significant remaining
spatial autocorrelation with the Moran I statistic.

We used the program WinBUGS (version 1.4.2, Spiegel-
halter et al. 2003) to fit both spatial ICAR and nonspatial
GLM analogues (see Supplementary Material for BUGS
code). The WinBUGS simulations used 3 chains, each
with a burn-in period of 10,000 iterations followed by
40,000 iterations for estimation. We evaluated conver-
gence with the Brooks–Gelman–Rubin statistic (Spiegel-
halter et al. 2003). We assumed no preexisting knowl-
edge of model coefficients and thus specified “vague” or
uninformative priors (Gelman et al. 2004).

We adapted the modeling framework of Latimer et al.
(2006; models 2 and 4), which overlays a regular grid
of cells on the study area and considers each cell a sam-
ple unit potentially containing a number of survey loca-
tions. Our sample unit grid was derived from the grid of
24 km2 hexagons used by the Forest Inventory and Anal-
ysis program (FIA; http://fia.fs.fed.us/) to monitor forest
structure and plant communities at broad scales. The FIA
hexagons form a seamless regular lattice across the con-
tiguous United States. This modeling framework reduces

problems arising from uneven sampling intensity or sur-
vey effort, reduces the number of sample units to a level
(here <4000) that makes regional-scale ICAR modeling
computationally feasible, facilitates parameterization of
spatial neighborhood effects, and makes results compara-
ble with other species distribution models that are based
on this sampling grid.

Because we did not have access to survey data from
nonfederal lands in Oregon and Washington, we added
an additional hierarchical level to the model structure
that allowed incorporation of a variable representing the
proportion of such federal lands within a hexagon. Al-
though an imperfect surrogate for survey effort, this vari-
able allowed us to assess alternate models that incorpo-
rated known sources of survey bias. Survey effort (relative
area or RA) modified the predicted abundance term such
that the observed Poisson mean λobs

i = λi × exp{α ×
log(RAi)}. The addition of survey effort to a second hier-
archical level, rather than at the same level as the habitat
covariates, allows one to easily extract estimates of abun-
dance under uniform survey effort (Latimer et al. 2006
[model 4]; Supplementary Material S3).

For those models that incorporated a survey effort vari-
able, proportion of old-growth and mature forest was
measured for the surveyed area alone (FS and BLM lands),
rather than for the cell as a whole, to avoid biasing esti-
mates of the coefficients of environmental variables. With
one exception, the 2275 cells with <1.5% of their area
surveyed showed no owl site records. Therefore, we re-
duced computational time by categorizing these cells as
unsurveyed (i.e., as lacking response data in the simula-
tions). In our data set, 51.3, 19.5, and 29.2% of the 5501
cells with survey effort above this level contained 0, 1,
and 2 or more owl sites, respectively. Among surveyed
cells, mean number of owl sites was 1.42. To assess po-
tential geographic variation in owl habitat relationships,
we divided the analysis area into 3 subregions on the basis
of contrasting prey communities and a strong dispersal
barrier (the Columbia River): (1) southern, northwestern
California/southwestern Oregon, where woodrats dom-
inate the owl diet (Forsman et al. 1984; USFWS 2007),
(2) central, the remainder of Oregon, and (3) northern,
Washington.

We first selected an a priori set of candidate models of
9 alternate model structures to be evaluated with both
ICAR and nonspatial structures (Supplementary Material
S1). Models representing linear, pseudothreshold, and
quadratic relationships were evaluated with variables for
proportion of old-growth forest only (OG), combined
old-growth and mature forest (MAT), and separate old-
growth and mature forest variables. The pseudothresh-
old model was structured as a logarithmic relationship,
for example, β1i × log((xi) + 1 × 10−8) (Franklin et
al. 2000). We fitted candidate models in WinBUGS and
ranked competing models by their deviance informa-
tion criterion (DIC) value (Spiegelhalter et al. 2003). In
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addition to the use of DIC, we sought the model with
lowest mean-squared predictive error (MSPE; Gelfand &
Ghosh 1998) and with a posterior predictive p value
(PPPV) between 0.05 and 0.95, which indicated that it
was not unlikely that the model predictions were drawn
from the same distribution as the observed data (Gelman
et al. 2004). Because zero inflation is common in count
data from surveys of rare species (Martin et al. 2005),
we compared the relative fit of the best model selected
from the set of 9 standard Poisson ICAR models with anal-
ogous models from 2 alternative distributions, negative
binomial and zero-inflated Poisson (ZIP).

We interpreted the coefficients of best spatial mod-
els and the spatial patterns of model results (predicted
abundance, spatial random effect (ρ), and predicted abun-
dance with the ρ term removed) in the light of previous
studies of the ecology of the species. Evaluating predicted
abundance without the ρ term allowed us to draw conclu-
sions about species–habitat relationships that are more
robust to the influence of survey bias or unmeasured en-
vironmental variables. To remove the influence of survey
effort on predictions of abundance without the ρ term,
we also recalculated predictions with relative area set to
1 (100%) and with proportion of old-growth and mature
forest measured for the cell as a whole, rather than for
the surveyed area alone.

Lastly, we assessed the proportion of predicted owl
abundance (with the ρ term removed) and total Biomap-
per habitat score (Davis & Lint 2005) captured by 5 alter-
nate reserve network proposals: 1992 and 2007 critical
habitat (USFWS 1992, 2007), the NFP’s late-successional
reserves, and options 1 and 2 of the 2007 draft North-
ern Spotted Owl recovery plan (USFWS 2007). Although

Table 1. Model coefficients for best (1) and closest competing models (2) for the relationship between Northern Spotted Owl site occurrence and
old-growth (OG) and mature (MAT) forest within 3 subregions in the Pacific Northwest.∗

Model component

intercept OG MAT OG + MAT α DIC

Southern
(1) quadratic: (og + mat) mean −1.739 5.056, −2.666 0.873 4931.0

SD 0.158 0.674, 0.689 0.116
(2) quadratic: (og, mat) mean −1.446 4.575, −3.486 2.873, −1.448 0.872 4934.5

SD 0.121 0.769, 1.454 0.760, 1.204 0.112
Central

(1) threshold: (og, mat) mean 1.547 0.511 0.295 0.962 5425.3
SD 0.178 0.084 0.094 0.072

(2) threshold: (og + mat) mean 0.961 0.807 0.991 5430.4
SD 0.118 0.108 0.071

Northern
(1) threshold: (og + mat) mean 0.573 1.271 1.364 2455.7

SD 0.181 0.143 0.123
(2) threshold: (og, mat) mean 1.128 0.914 0.206 1.316 2464.2

SD 0.239 0.132 0.104 0.122

∗Mean estimates from the Markov Chain Monte Carlo simulations are followed by standard deviations (SD). The variable α modifies the

influence of survey effort on observed counts. DIC is deviance information criterion. Sample size (n) = 2151, 2827, and 3248 for the southern,

central, and northern subregions, respectively.

unlike managed owl conservation areas, habitat blocks
would be delineated by regional managers on the basis
of rules governing size and spacing after adoption of the
recovery plan, we used reserve boundaries from an ex-
ample of the habitat-block reserve network published in
the draft recovery plan (USFWS 2007).

Results

Spatial Poisson Models

Poisson ICAR models with a variable representing sur-
vey effort (proportion of cell surveyed) performed better
than those without this variable in all subregions (Sup-
plementary Material S1). Representing survey effort in a
second hierarchical level of the model, rather than on
the same level as habitat covariates, also increased model
fit (�DIC of 23.8–35.6 for best subregional models, C.C.,
unpublished data). Nevertheless, selection of the best
model from among the 9 candidate models was consistent
between model sets that did or did not contain the sur-
vey effort variable. The structure of the best model (e.g.,
linear, pseudothreshold, or quadratic) differed between
the southern subregion and other subregions (Table 1).
A quadratic model based on the combined proportion
of old-growth and mature forest (model 8; Supplemen-
tary Material S1) showed the lowest DIC in the south-
ern subregion (northwestern California and southwest-
ern Oregon) (Fig. 1). In the central (northern Oregon)
and northern (Washington) subregions, the best model
contained a pseudothreshold relationship between owl
site abundance and the proportion of old-growth and
mature forest, represented separately (Fig. 2b; model 6,
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Figure 1. Predicted response curves of the relationship

of Northern Spotted Owl site abundance to combined

proportion of old-growth and mature forest within

24-km2 cells. Response curves for the 3 geographic

subregions are based on the following models:

southern, model 8; central, model 5; northern, model 5

(which are [a], [b], and [c], respectively, in Fig. 2). We

identified a model with a single, combined

old-growth/mature forest variable as the best model

in the southern and northern subregions and the

closest competing model in the central subregion.

Supplementary Material S1) or as a combined variable
(Fig. 1; model 5, Supplementary Material S1), in the cen-
tral and northern subregions, respectively. We used the
set of Poisson ICAR models that contained survey effort as
the base set of models from which to draw comparisons.
Within this base set, model 8 (southern subregion), model
6 (central subregion), and model 5 (northern subregion)
are referred to as the selected set of models (Table 1).

Nonspatial Poisson models exhibited much poorer
performance (higher DIC) than Poisson ICAR models

Figure 2. Predicted response curves of the relationship of Northern Spotted Owl site abundance (z-axis) to

proportion of old-growth (OG) (y-axis) and mature (MAT) forest (x-axis) within 24-km2 cells. Response curves for

the 3 geographic subregions are derived from the following models: (a) southern, model 9; (b) central, model 6; (c)

northern, model 6. We identified a model with distinct variables for old-growth and mature forest as the best

model in the central subregion and the closest competing model in the southern and northern subregions.

in all subregions, but especially in the central and
northern subregions (Table 2). The rank of models was
relatively robust between spatial models and their non-
spatial analogues. Although the magnitude of the coeffi-
cient for old-growth was similar between analogous spa-
tial and nonspatial models (model 6), the coefficient for
mature forest was smaller in the nonspatial versions for
the northern and central subregions. Residuals from non-
spatial Poisson models showed significant spatial auto-
correlation (p value < 0.01 for Moran I statistics) at all
lag distances. Residuals from Poisson ICAR models gen-
erally showed no significant spatial autocorrelation. The
exception, between hex cells at the largest lag distances
in the northern subregion, is likely due to edge effects
arising from the disjunct distribution of surveyed lands in
Washington.

Performance of Poisson, Negative Binomial, and ZIP Models

Nonspatial ZIP and negative binomial models performed
better than nonspatial Poisson models, as judged by DIC
and the ability to approximate the observed proportion
of cells in the 3 abundance classes (cells with 0, 1, and
2 or more sites; Supplementary Material S2). Neverthe-
less, the Poisson ICAR models performed better than
either ZIP or negative binomial ICARs. The ZIP ICARs
performed better than negative binomial ICARs.

Nonspatial Poisson models greatly underestimated the
number of cells with zero sites (Supplementary Mate-
rial S2). In contrast, Poisson ICARs predicted a similar
number of cells with 0 sites as was observed, but over-
predicted the number of cells with 1 site and underpre-
dicted the number of cells with 2 or more sites. Never-
theless, predictions from the negative binomial and ZIP
ICARs also differed from the observed data in this re-
spect. The overdispersion coefficients were 1.32, 2.51,
and 3.79 for the southern, central, and northern subre-
gions, respectively, in the nonspatial negative binomial
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Table 2. Relative performance, as measured by the deviance
information criterion, of alternate versions of the selected set of
Northern Spotted Owl habitat models (model 8, southern subregion;
model 6, central subregion; model 5, northern subregion) with
contrasting model structures.∗

Subregion

southern central northern

Model
Poisson ICAR 4931.0 5425.3 2455.7
Poisson nonspatial 5685.8 10079 4579.9
negative binomial ICAR 4940.1 5548.4 2559.3
negative binomial nonspatial 5575.7 6757.0 3160.2
ZIP ICAR 4933.9 5524.2 2529.9
ZIP nonspatial 5620.2 9098.0 3893.9

∗Abbreviations: ICAR, intrinsic conditional autoregressive model;

ZIP, zero-inflated Poisson model.

models. The overdispersion coefficients in the negative
binomial ICARs (1.01, 1.03, and 1.12, respectively), how-
ever, approximated those from a standard Poisson model
(overdispersion = 1). Similar contrasts were evident be-
tween the nonspatial and ICAR ZIP models. Estimates
of q (probability of the observation at a cell being gen-
erated from a Poisson distribution) were 0.852, 0.680,
and 0.448 in the nonspatial ZIP models, but were 0.997,
0.944, and 0.896 (for the southern, central, and northern
subregions, respectively) in the ZIP ICARs.

Interpretation of Model Diagnostics, Coefficients, and Spatial
Predictions

The DIC and MSPE suggested a generally similar ranking
among the set of Poisson ICAR models (Supplementary
Material S1). The best model as judged by DIC also con-
sistently showed the PPPV closest to 0.50 (thus show-
ing an optimal balance between over- and underfitting).
Nevertheless, PPPV values for the selected model in the
southern subregion were >0.95, suggesting that all can-
didate models were overfit. The DIC and MSPE rankings
were also generally consistent within the set of nonspa-
tial models. Nevertheless, PPPV was uniformly near zero,
indicating lack of fit.

Among the base set of Poisson ICAR models, for mod-
els that contained old-growth and mature forest as sep-
arate variables, the coefficient for old-growth increased
in magnitude from the southern to northern subregion.
In all subregions the coefficient for old-growth was
greater than that for mature forest, and this contrast in-
creased from the southern to northern subregion (Table
1). Graphical comparison of the predicted response sur-
face from the selected models across subregions (Figs.
1 & 2) showed the effect of contrasting model struc-
tures (quadratic [southern] vs. pseudothreshold [central
and northern]) and contrasting treatment of old-growth
and mature forest as 2 separate (central) or a combined
(southern and northern) variable.

On the basis of the model’s environmental compo-
nent (excluding ρ and with survey effort set uniformly to
100%), predicted owl abundance declined with increas-
ing latitude because of the contrast in models between
the 3 subregions (Fig. 3a). Areas of high predicted abun-
dance occurred in low to mid elevation valleys of the
southern subregion and in the southern Oregon Coast
Range and portions of the Oregon and Washington Cas-
cades (Fig. 3a). Areas with strongly positive values of ρ

were generally associated with demographic study areas
(Fig. 3b).

Abundance within Alternate Reserve Networks

The 5 alternate reserve networks (1992 and 2007 criti-
cal habitat, late-successional reserves, managed owl con-
servation areas, and habitat blocks) contained between
17.8% and 28.7% of the region’s federal land and between
22.0% and 35.8% of the total owl abundance derived
from predicted abundance values that did not include
ρ (Table 3). The 2 options proposed in the 2007 recov-
ery plan—managed owl conservation areas and habitat
blocks—reduced the proportion of predicted owl abun-
dance captured by 20.3% and 32.7%, respectively, from
that captured within the late-successional reserve net-
work (Table 3). The 2007 critical habitat protected 38.0%
less of the predicted owl abundance than the 1992 desig-
nation. Figures based on the percentage of habitat value
predicted by the Biomapper model (Davis & Lint 2005)
were comparable to those from this study except for
Biomapper’s more positive assessment of 2007 proposed
critical habitat (Table 3).

Discussion

Role of Spatial Models

Spatial autocorrelation is a pervasive characteristic of data
sets of species distribution, because of spatially autocor-
related environmental factors and biological processes
such as dispersal that tend to result in aggregated distri-
butions of individuals (Clark 2007). It may be especially
prevalent for species such as the Northern Spotted Owl
that are area and dispersal limited (Noon & Blakesley
2006) and thus show strong effects of population pro-
cesses on distribution. Our analysis attempts to bridge the
gap between rangewide nonspatial modeling of species
distributions derived from found data and abundance
modeling derived from mark–recapture data from inten-
sive studies of limited geographic extent. Because ICAR
models facilitate partitioning of the spatial component
from environmental effects, they increase the generality
of the habitat relationships described in the model and
improve estimation of their coefficients.

Presence-only data, such as that used here, are more
likely to contain survey bias than systematic presence
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Figure 3. Map of predicted

Northern Spotted Owl abundance

based on a probability surface

composed of the best model for

each subregion: (a) predicted

probability without spatial

random effect (ρ) and (b) spatial

random effect (ρ). In (b),

demographic study areas are

outlined in white.

and absence data sets. By allowing survey bias to be ac-
counted for in the ρ term, our ICAR models provide a
more robust surrogate for true abundance than would a
nonspatial model developed from found data. A more
complex hierarchical model incorporating a sampling
model and a spatially varying “migrant pressure” model
would be required to explicitly distinguish effects of
unmeasured environmental variables, sampling bias, or
population processes. Nevertheless, the strong pattern
of higher ρ in demographic study areas (Fig. 3b) suggests
that survey bias is a major component of the spatial ran-
dom effect. Because owl site data from California had
been preprocessed to remove some duplicate observa-
tions (CDFG, unpublished data) and thus reduce survey

bias, the contrast in fit between spatial and nonspatial
models was less in that subregion. Although a model
containing a binary variable representing demographic
study areas could be evaluated post hoc, we sought here
to demonstrate how the ICAR framework allows more
flexible exploration of and increased robustness to spa-
tial effects that are not included in the a priori model
set. If the spatial random effect term is dominated by nui-
sance factors such as survey bias, probability values can
be mapped without ρ to assess which elements of the dis-
tributional patterns are linked to known environmental
variation.

The ICAR models we used are more difficult to
construct and require more computational time than
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Table 3. Percentage of the total Northern Spotted Owl population
predicted to be contained within alternate proposed reserve
networks, as predicted by a probability surface composed of the best
model for each subregion and by habitat scores from a previous study
in which the Biomapper model was used (Biomapper habitat score)
(Davis & Lint 2005).a

Biomapper
Percentage Predicted habitat

of areab abundancec score

1992 critical habitat 28.72/27.79∗ 35.48 35.77
2007 critical habitat 20.01/19.86 21.99 25.65
LSRs 27.06/26.65 32.68 32.53
MOCAs (option 1) 20.39/20.17 26.06 25.96
Habitat blocks 17.78/17.61 21.99 22.27

(option 2)

aAbbreviations: LSRs, late-successional reserves; MOCAs, managed

owl conservation areas.
bPercentage of area differs slightly between predicted abundance

(first value) and Biomapper habitat value calculations (second

value) due to differing extents of the input vegetation data.
cPredicted abundance was calculated without the spatial random

effect (ρ). Figures are for federal lands only, excluding

congressionally reserved areas, which are reserved from timber

harvest under all alternatives and represent 27% of federal land

area, 18.83% of predicted abundance, and 19.53% of Biomapper

habitat value.

equivalent nonspatial models. The fact that model struc-
ture (e.g., linear, pseudothreshold, or quadratic) did not
contrast strongly between the best spatial and nonspatial
models might suggest that such investment is unneces-
sary. Nevertheless, the additional cost of spatial models is
justified by the large contrast in the magnitude of coeffi-
cients of certain variables between spatial and nonspatial
models and the greatly increased fit of spatial models. Au-
thors of a recent review used simulated data and found
that CAR models performed well when compared with
alternative methods for modeling spatially autocorrelated
species distribution data (Dormann et al. 2007). The large
proportion of sites where a species is absent or not de-
tected may also confound application of standard statis-
tical methods (Martin et al. 2005). Although our data set
had relatively little zero inflation, standard Poisson mod-
els were clearly inferior to the negative binomial and ZIP
alternatives in a nonspatial context. Poisson ICAR mod-
els inherently incorporate overdispersion through their
spatial random-effect term (Gelman et al. 2004). For our
data this spatial structure was sufficient to obviate the
need for additional remedies for zero inflation such as
ZIP ICARs. Although Poisson ICAR models outperformed
negative binomial and ZIP ICAR models in our results,
this may not be true for all species, making it advisable
to evaluate all 3 model structures when building spatial
distribution models for rare species.

Although the DIC (Spiegelhalter et al. 2003) is the most
commonly used model-selection criterion for Bayesian
models, criteria derived from posterior predictive loss
(MSPE and PPPV; Gelfand & Ghosh 1998; Gelman et al.

2004) may be a useful alternate diagnostic. In our results,
both DIC and MSPE suggested a generally similar ranking
of models, whereas PPPV provided an absolute rather
than relative evaluation of overall model fit.

Owl Habitat Associations

As is typical of found data sets, we lacked comprehensive
information on survey effort. We accounted for a por-
tion of the geographic variation in survey effort with our
“relative area of federal land” term. The Bayesian MCMC
methodology allowed inclusion of survey effort as an ad-
ditional hierarchical level in the model rather than sim-
ply as an additional covariate (Latimer et al. 2006; Clark
2007). The flexibility of the hierarchical Bayes structure
thus facilitated a more straightforward interpretation of
predicted abundance values and better model fit as com-
pared with a single-level model. Encouragingly, model
ranking was robust to inclusion of the survey-effort co-
variate. Although coefficients were of lower magnitude in
models with versus without the survey-effort term, they
showed similar contrasts between old-growth and ma-
ture forest and between regions. Thus, conclusions from
models with a survey effort term may be conservative in
their estimates of the strength of the owl’s association
with older forest.

Our results support the hypothesis of a more linearly in-
creasing relationship between owl abundance and older
forest in the northern than in the southern portion of
the range. This may be due to contrast in prey communi-
ties between the southern subregion, where the woodrat
is the primary prey species, and the central and north-
ern subregions, where old-forest–associated species dom-
inate the owl’s diet.

In the southern subregion the best model predicted a
quadratic relationship between owl sites and the com-
bined proportion of old-growth and mature forest (Table
1). This could occur if edge habitat between early- and
late-seral forest stands increases woodrat abundance and
availability and owl fecundity (Franklin et al. 2000). The
closest competing model estimated separate quadratic
functions of old-growth and mature forest, with old-
growth having a stronger effect than mature forest on
owl abundance.

In the central subregion the best model predicted a
pseudothreshold relationship between owl sites and old-
growth and mature forest, estimated separately. This sug-
gests that the habitat value of old-growth for owls is
more distinguishable from that of mature forest than in
the southern subregion and that there is no reduction in
value in cells with the highest proportions of older forest.
The closest competing model in this subregion was de-
rived from a pseudothreshold function of the combined
proportion of old-growth and mature forest (Table 1).

In the northern subregion the best model predicted
a pseudothreshold relationship between owl sites and
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the combined proportion of old-growth and mature for-
est. The closest competing model contained separate
thresholds for old-growth and mature forest (Table 1).
Although the best models were clearly superior to the
closest competing models (�DIC of 3.5–8.5; Table 1),
results more conclusively distinguished between model
structures (quadratic or pseudothreshold) than between
the habitat value of old-growth and mature forest (Supple-
mentary Material S1). This may be because our mature-
forest age class (50–150 years) includes some stands (e.g.,
those over 100 years in age) that are often included in
the old forest age class in owl habitat studies (Dugger
et al. 2005). In addition, interpretation of the predicted
habitat associations for each subregion (Figs. 1 & 2) de-
pends equally on the form of the best model (quadratic or
pseudothreshold) and the coefficients of the model. For
example, because the quadratic inflection in the model
for the southern subregion occurred in landscapes with
95% old-growth and mature forest, it effectively portrays
a threshold relationship at levels of greater than 80% old-
growth and mature forest (Fig. 1).

Reserve Design Implications

Although our results support the hypothesis of latitudinal
variation in owl habitat relationships, they do not support
the draft recovery plan’s generalization of a quadratic
habitat relationship to the central and northern subre-
gions (USFWS 2007). They also suggest that the recov-
ery plan’s goals for maintaining the proportion of “high-
quality” habitat within reserves at 50% (in the south) to
70% (in the north) (USFWS 2007) may be too low to max-
imize owl abundance within reserves. In contrast, model
results would suggest maintenance of over 80% of old-
growth and mature age classes within owl conservation
areas would be optimal for maximizing owl abundance in
the southern subregion. Within the central and northern
subregions, no such threshold is evident from our results
because owl abundance was predicted to continuously
increase with increasing proportion of old-growth and
mature forest.

Our results also suggest that the 2 options proposed in
the 2007 recovery plan would protect one-quarter to one-
third fewer owls than would the current late-successional
reserve network. At this scale, ICAR results were consis-
tent with those from the Biomapper model (Table 3).
Nevertheless, the ICAR model results provided a clearer
interpretation of how habitat relationships vary latitudi-
nally and of patterns of potential survey bias. Although re-
sults from our static models cannot directly address how
habitat loss affects population viability, they do facilitate
better parameterization of dynamic models that address
this question. Given the negative mean annual population
growth rate of 12 of the 13 demographic study areas (An-
thony et al. 2006), maintaining or strengthening, rather

than reducing, the current reserve system appears advis-
able.

Spotted Owl abundance may be negatively affected
by competition with its congeneric, the Barred Owl (S.

varia), which has expanded its range from eastern North
America in the last 40 years (Noon & Blakesley 2006).
Although we did not have access to data on Barred Owl
distribution of sufficient quality to use as a covariate in
the models, model results can help generate hypotheses
regarding their effects. The greater abundance of barred
owls in the northern subregion (Noon & Blakesley 2006)
may be linked to the Spotted Owl’s lower abundance
and greater association with old-growth forest there in
our results.

Our results suggest that the significantly greater cost
of spatial models in computational time and effort may
be well justified for regional analyses of species distri-
bution. Autoregressive models, by explicitly incorporat-
ing a spatial random effect term, provide a more flexi-
ble substitute for the trend surface variables and other
surrogates for spatial trend commonly used in species
distribution models and help account for the zero infla-
tion (the large number of sample units where the species
was absent) commonly found in such data without resort-
ing to the use of more complex probability distributions.
In habitat modeling, as more broadly in ecology (Clark
2007), the increased availability of flexible software for
Bayesian analysis has the potential to transform our un-
derstanding of the relationship between species and their
environment.
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Supplementary Material

Model selection and diagnostic results for all candidate
models (Appendix S1); the number of cells per abun-
dance class for the selected set of Northern Spotted Owl
habitat models with contrasting model structures (Ap-
pendix S2); and WinBUGS code for Poisson, negative bi-
nomial, and ZIP ICAR models (Appendix S3) are available
as part of the on-line article from http://www.blackwell-
synergy.com/. The author is responsible for the content
and functionality of these materials. Queries (other than
absence of the material) should be directed to the corre-
sponding author.
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