
 

 

Supplementary Material S1: Description of Survey Data 

  For Monadenia churchi, the dataset was that used in Dunk et al. (2004). A stratified-

random sampling design (each of the four National Forests as strata) was used to select 308 plots 

to be surveyed from the set of 1,101 FIA plots within these National Forests. (Model predictions 

were made for the 1,062 of the 1,101 plots for which environmental data was available). Most 

plots were sampled during spring of 1999-2000. Each FIA plot was sampled for mollusks twice, 

with a minimum of 10 days between surveys. Surveys were conducted only if the daytime 

temperature was >5° C and soil was moist as determined by touch. Surveys began with crews 

walking through the 1-ha plot and identifying structural features that were likely to provide 

mollusk habitat (e.g., downed wood), after which two types of focused searches were conducted. 

Area searches targeted the most likely mollusk habitat by thoroughly inspecting a feature (e.g., 

downed wood, rocks, ferns) and the area likely to contain mollusks within a 5 m radius 

surrounding that feature. One 20-person-minute time-constrained area search was conducted. 

Point searches were 40-minute time-constrained searches in which surveyors visited many 

locations within the plot, spending a maximum of 3 minute at any location before moving on. 

Thus, each plot was sampled twice, for 1 hour each time (Dunk et al. 2004). 

 For Arborimus longicaudus, the dataset was that used in Dunk and Hawley (2009). A 

stratified random sampling scheme was used to select 365 FIA plots from the 1,008 plots on 

National Forests within the range of A. longicaudus. Plots were stratified based on habitat and 

reserve status. Surveys were conducted between October 2001 and October 2004. At least 4 two 

trained observers conducted visual searches along four transects, spaced 25 m apart within each 

1-ha plot, and recorded presence (at least 1 nest, occupied or not) or absence of A. longicaudus 

nests. Surveyors identified nest structures and conducted ground searches below nests for 



 

 

evidence of the species. All potential nest trees, as well as five random trees, were climbed. 

Random trees were climbed on plots where no potential nest structures were detected from the 

ground, yet trees >61 cm dbh existed or the entire canopy was not visible (Dunk and Hawley 

2009). 

 For Martes pennanti pacifica, the dataset was that used in Davis et al. (2007) with the 

addition of non-systematic surveys from coastal California (Carroll 2005) and more recent 

systematic surveys from northcentral California (S. Yeager, USFWS, unpubl. data). Systematic 

fisher surveys were conducted between 1991 and 2006. Field survey locations were arrayed in a 

systematic-cluster design aligned with the FIA grid. Fisher survey crews surveyed alternate FIA 

plots separated by approximately 11 km (Zielinski et al. 2005). Each of the sample units 

consisted of six enclosed carbon-blackened aluminum track-plate stations and 1-2 remotely 

triggered cameras. A track-plate station located at the FIA plot was surrounded by five additional 

track-plate stations equally spaced around the circumference of a 500 m radius circle centered on 

the plot. All stations were checked and rebaited every other day for eight visits over a 16-day 

survey. Presence-absence data for the fisher was also available from surveys conducted before 

the Northwest Forest Plan without reference to a systematic sampling design but with otherwise 

similar survey protocol (Carroll et al. 1999, Carroll 2005). This data was incorporated here to 

broaden geographic representation of sampled sites to private lands. In all, 993 of the 7813 FIA 

hexagons within the species' California range held one or more survey locations. 



 

 

Supplementary Material S2: Results of comparison of alternate candidate models 

Table S2a. Model selection results expressed as mean squared predictive error (MSPE) values for Monadenia churchi occurrence in 
southern Oregon and northern California.  A neighborhood radius of 6 km was used in the spatial models. Sample size is 308 
surveyed, 1062 total plots. Variables followed by 2 are present in the model in quadratic form. The metric used for calculating MSPE 
differs between species with point-level and landscape-level models so is not directly comparable between species. 

 

Model        Spatial   Non-spatial   

1 CDBH2, HC2, CVPRE2, SMRT2    0.0007631  0.001657 

2 CDBH, HC2, CVPRE2, SMRT2    0.0007631  0.001695 

3 CDBH2, HC, CVPRE2, SMRT2    0.0007704  0.001660 

4 CDBH2, HC2, CVPRE, SMRT2    0.0007670  0.001657 

5 CDBH2, HC2, CVPRE2, SMRT    0.0007650  0.001674 

6 CDBH       0.0008330  0.001897 

7 HC        0.0008091  0.001759 

8 CVPRE       0.0008735  0.001820 

9 SMRT       0.0008533  0.001831 

10 CDBH2, HC2, CVPRE, SMRT     0.0007754  0.001675 

11 CDBH, HC, CVPRE, SMRT    0.0007625  0.001720 

12 CDBH2, HC, CVPRE, SMRT    0.0007781  0.001682 



 

 

13 CDBH, HC2, CVPRE, SMRT    0.0007593  0.001712 

14 CDBH2, HC2, CVPRE     0.0007870  0.001675 

15 CDBH2, HC2, SMRT     0.0007667  0.001701 
  



 

 

 
Table S2b. Model selection results expressed as mean squared predictive error (MSPE) values for Arborimus longicaudus occurrence 

in southern Oregon and northern California. A neighborhood radius of 8 km was used in the spatial models. Sample size is 365 

surveyed, 1008 total plots.  

Model        Spatial   Non-spatial   

1 SLOPE2, BAREA2, SDDBH2, MAXDBH2   0.001028  0.001588 

2 SLOPE, BAREA2, SDDBH2, MAXDBH2  0.001050  0.001589 

3 SLOPE2, BAREA, SDDBH2, MAXDBH2   0.001039  0.001622 

4 SLOPE2, BAREA2, SDDBH, MAXDBH2   0.001030  0.001596 

5 SLOPE2, BAREA2, SDDBH2, MAXDBH   0.001024  0.001619 

6 SLOPE, BAREA2, SDDBH, MAXDBH2   0.001046  0.001598 

7 SLOPE, BAREA, SDDBH, MAXDBH2    0.001036  0.001638 

8 SLOPE2, BAREA, SDDBH, MAXDBH    0.001039  0.001653 

9 SLOPE, BAREA, SDDBH, MAXDBH    0.001053  0.001654 

10 SLOPE       0.001316  0.002081 

11 BAREA       0.001319  0.002105 

12 SDDBH       0.001187  0.001804 

13 MAXDBH       0.001234  0.001716 



 

 

14 SLOPE, BAREA2, SDDBH2, MAXDBH  0.001046  0.001619 



 

 

Table S2c. Model selection results expressed as mean squared predictive error (MSPE) values for Martes pennanti pacifica occurrence 
in California. A neighborhood radius of 8 km was used in the spatial models. Sample size is 993 surveyed, 7813 total cells. 

Model       Spatial   Non-spatial   

1 SIZ, GRN, TRI, SNOW2    0.1023   0.2258 

2 DEN, GRN, TRI, SNOW2    0.1022   0.2227 

3 DEN, GRN, TRI, SNOW    0.1023   0.2226 

4 DEN, GRN, TRI     0.1025   0.2240 

5 GRN, TRI, SNOW     0.1026   0.2261 

6 DEN, GRN, SNOW     0.1024   0.2323 

7 DEN, TRI, SNOW     0.1029   0.2292 

8 DEN, TRI      0.1030   0.2361 

9 DEN       0.1028   0.2448 

10 TRI       0.1039   0.2627 

11 DEN, TRI, WHR2     0.1024   0.2342 

12 DEN, TRI, PPT     0.1029   0.2360 

13 DEN, TRI, WHR1     0.1027   0.2324 



 

 

 

Supplementary Material S3. Example WinBUGS and OpenBUGS code for ICAR and CAR models of species occurrence and 

abundance and R function for creating neighborhood weights used in CAR models of species occurrence. 

Note on choice of priors: The priors used in these models can be characterized as weakly informative. This is due to the fact that  

1) Priors for beta are expressed on the logit scale, that when expressed on the scale of the response are weakly informative. For the 

prior on [beta[i] ~ dnorm(0, 0.4) ], 0.4 represents the precision, so variance = 2.5, and SD = 1.58, resulting in a nearly flat distribution 

once transformed by the inverse logit. 

2) The prior used in defining the distribution of spatial random effect [gammaz ~ dbeta(9,1)] results in the mass of the distribution 

lying close to 1. This is due to the fact that distributions that appear uninformative (e.g., uniform (0,1) are actually informative in 

suggesting no spatial effect in this context (Ferreira, M. A. R. and De Oliveira, V. 2007. Bayesian reference analysis for Gaussian 

Markov random fields. Journal of Multivariate Analysis 98:789-812). 



 

 

#Binomial ICAR model for Martes pennanti pacifica (Model 2: DEN, GRN, TRI, SNOW2).  
#As in Latimer et al. (2006), N_LOC = total number of cells, N_sampled = number of  
#cells with response data (termed N_nonzeroy in Latimer et al. 2006), and ind = index of those cells. 
#PCC (percent correct classification) = 100 * (1 – (pmc/N_sampled)) 
 
model 
{ 
   # likelihood 
  for (i in 1 : N_sampled) { 
   y[ind[i]] ~ dbin(p[ind[i]], n[ind[i]]) 
   residind[i]<-log(y.rep[i]+0.00000001)-log(y[ind[i]]+0.00000001) 
   residind2[i]<-abs(y.rep[i]-y[ind[i]])/n[ind[i]] 
   p.rep[i] <- cut(p[ind[i]])  
   y.rep[i] ~ dbin(p.rep[i], n[ind[i]]) 
  }  
  for(i in 1:N_LOC){ 
       
             logit(p[i]) <- rho[i]+xbeta[i]+mu 
             xbeta[i]<-beta[1]*den[i]+beta[2]*grn[i]+beta[3]*tri[i]+beta[4]*snow[i]+beta5*snow[i]*snow[i] 
  }   
   
  # CAR prior distribution for spatial random effects: 
  rho[1:N_LOC] ~ car.normal(adj[], weights[], num[], tau) 
   
                
 temp<-whr2[1]+prec[1]+whr1[1]+rd[1]+siz[1] 
  
 # other priors 
      mu ~ dflat() 
      for ( i in 1:4)  { beta[i] ~ dnorm(0, 0.4)  }  
      beta5 ~ dunif(-.1, .1) 
      vrho ~ dnorm(0, 0.2) I(0,) 
        tau <- 1/vrho  



 

 

  #Model Choice using Gelfand and Ghosh (1998) Criteria 
  #divisor=N_sampled(N_sampled+1)/2, here 493521 
  MSPEa <- inprod(residind[],residind[])/493521 
  pmc <- sum(residind2[]) 
 } 
 
#Bernoulli CAR point-level model for Arborimus longicaudus (Model 5: SLOPE2, BAREA2, SDDBH2, MAXDBH).  
# N_LOC = total number of points, N_sampled = number of points with response data (termed N_nonzeroy in Latimer et 
al. 2006), and ind = index of those cells. 
 
model 
{ 
   # likelihood 
  for (i in 1 : N_sampled) { 
   y[ind[i]] ~ dbern(p[ind[i]]) 
   residindB[i]<-abs(y.rep[i]-y[ind[i]]) 
   p.rep[i] <- cut(p[ind[i]])  
   y.rep[i] ~ dbern(p.rep[i]) 
  }  
  for(i in 1:N_LOC){ 
       
             logit(p[i]) <- sig*z[i]+xbeta[i]+mu 
   xbeta[i]<-beta[1]*slope[i]+beta[2]*slope[i]*slope[i]+beta[3]*barea[i]+beta[4]*barea[i]*barea[i]   
         +beta[5]*sddbh[i]+beta[6]*sddbh[i]*sddbh[i]+beta[7]*maxdbh[i] 
             mu.z[i]<-0  
  }   
   
  # CAR prior distribution for spatial random effects: 
   z[1:N_LOC] ~ car.proper(mu.z[], C[], adj[],num[], M[], 1, gamma) 
   
                
 #temp<-barea[1]+sddbh[1]+maxdbh[1] 
  



 

 

 # other priors 
  mu ~ dflat() 
  for ( i in 1:7)  { beta[i] ~ dnorm(0, 0.4)  }  
  sig ~ dnorm(0,0.4) 
  abs.sig <- abs(sig) # the standard deviation of the z[] process   
  gammaz ~ dbeta(9,1) 
  gamma.max <- max.bound(C[], adj[], num[], M[]) 
            gamma <- gammaz*gamma.max 
  #Model Choice using Gelfand and Ghosh (1998) Criteria 
  #divisor=N_sampled(N_sampled+1)/2, here 66795 
  MSPEb <- inprod(residindB[],residindB[])/66795 
  pmc <- sum(residindB[]) 
 }  
# R function for creating CAR weights 
#'Four types of weighting schemes are available: RSW ('rs', exponential Cressie ('exp.cressie'),Cressie, and ICAR 
 
data = read.table(file.choose(),sep=',',head=T) 
data[,2:3]=data[,2:3]/1000   # Convert coordinates to km 
 
nm = 'ANVO' 
 
xcol=2 
ycol=3 
threshold=8 
ndefLstRS = ndef.dist(data=data,xcol=xcol,ycol=ycol,threshold=threshold,type='rs') 
ndefLstEC = ndef.dist(data=data,xcol=xcol,ycol=ycol,threshold=threshold,type='exp.cressie') 
ndefLstCR = ndef.dist(data=data,xcol=xcol,ycol=ycol,threshold=threshold,type='cressie') 
 
library(BRugs)            
# DATA 
bugsData(list(adj=ndefLstRS$adj, num=ndefLstRS$num, C=ndefLstRS$C, M=ndefLstRS$M), 
  fileName=paste(nm,'_CAR_RowStandardized.txt')) 
bugsData(list(adj=ndefLstEC$adj, num=ndefLstEC$num, C=ndefLstEC$C, M=ndefLstEC$M), 



 

 

  fileName=paste(nm,'_CAR_Exp_Cressie.txt')) 
bugsData(list(adj=ndefLstCR$adj, num=ndefLstCR$num, C=ndefLstCR$C, M=ndefLstCR$M), 
  fileName=paste(nm,'_CAR_Cressie.txt')) 
 
 
 
 
################################################################################ 
# Weights Function 
################################################################################ 
 
ndef.dist <- function(data, xcol, ycol, threshold, 
  type=c('rs','exp.cressie','cressie','icar'), phi) { 
    thresh <- threshold 
    distmat <- as.matrix(dist(cbind(data[,xcol], data[,ycol]))) 
    dist.ind <- (distmat <= thresh)*1.0 
    diag(dist.ind) <- 0 
    num <- as.vector(apply(dist.ind,1,sum)) 
    M <- 1/ifelse(num==0,1,num) 
    if(type%in%c('exp.cressie','cressie')) 
  { 
        if(missing(phi)) 
    { 
      if(type=='exp.cressie') phi <- thresh/3 
      else phi <- 1 
    } 
    NC <- sqrt((1/num)%*%t(num)) 
    if(type=='exp.cressie') edist <- exp(-distmat/phi)*NC*dist.ind 
    else edist <- (distmat^(-phi))*NC*dist.ind 
    edist <- edist/max(edist[edist>0]) 
  } 
  else if(type=='rs') 
  { 



 

 

    edist <- sweep(dist.ind,1,num,'/') 
  } 
  else edist <- dist.ind 
    n <- length(distmat[,1]) 
    adj <- NULL 
    C <- NULL 
    for(i in 1:n) { 
        neigh <- as.vector((1:n)*dist.ind[i,] ) 
        neigh <- neigh[neigh > 0] 
        neigh.C <- as.vector(edist[i,neigh]) 
        adj <- as.vector(c(adj,neigh)) 
        C <- as.vector(c(C, neigh.C)) 
    } 
    if(type %in% c('rs','cressie','exp.cressie')) 
    return(list(adj = adj, num = num, C=C, M=M)) 
    else return(list(adj = adj, num = num, weights=C)) } 
 

 

 


