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Abstract: Biologists who develop and apply babitat models are often familiar with the statistical challenges
posed by their data’s spatial structure but are unsure of whether the use of complex spatial models will
increase the utility of model results in planning. We compared the relative performance of nonspatial and
bierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern
(Church’s sideband snails [Monadenia churchi/, red tree voles [Arborimus longicaudus/, and Pacific fishers
[Martes pennanti pacifica/) that provide examples of a range of distributional extents and dispersal abilities.
We used presence-absence data derived from regional monitoring programs to develop models with both
landscape and site-level environmental covariates. We used Markov chain Monte Carlo algoritbms and a
conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models.
The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue
models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent)
methods. Although the best spatial and nonspatial models included similar environmental variables, spatial
models provided estimates of residual spatial effects that suggested how ecological processes might structure
distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic
species with ranges constrained by poorly known biogeograpbic factors and for widely distributed species
suspected to be strongly affected by unmeasured environmental variables or population processes. By treating
spatial effects as a variable of interest rather than a nuisance, bierarchical Bayesian spatial models, especially
when they are based on a common broad-scale spatial lattice (bere the national Forest Inventory and Analysis
grid of 24 km? bexagons), can increase the relevance of babitat models to multispecies conservation planning.

Keywords: conditional autoregressive, focal species, hierarchical Bayesian model, Martes pennanti, Northwest
Forest Plan, spatial autocorrelation, spatial autoregressive model, spatial dependence, species distribution model

Modelos Espaciales Bayesianos Jerarquicos para la Planificacion y Monitoreo de la Conservacion de Multiples
Especies

Resumen: Los biclogos que desarrollan y aplican modelos de bdbitat a menudo estdan familiarizados
con los retos estadisticos planteados por la estructura espacial de sus datos pero no estdn seguros si el
uso de modelos espaciales complejos incrementard la utilidad de los resultados del modelo para la planifi-
cacion.Comparamos el funcionamiento relativo de modelos no espaciales y espaciales Bayesianos jerdrquicos
para 3 taxa de vertebrados e invertebrados de interés para la conservacion (caracoles [Monadenia churchi/,
campaiiol rojo [Arborimus longicaudus/, marta pescadora [Martes pennanti pacifica/) que proporcionan
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2 Hierarchical Spatial Habitat Models

ejemplos de un rango de extensiones distributivas y habilidades disperoras. Utilizamos datos de presencia-
ausencia derivados de programas de monitoreos regionales para desarrollar modelos con covariables ambi-
entales a nivel de paisaje y de sitio. Utilizamos algoritmos Monte Carlo cadena de Markov y un marco de
modelo autoregresivo condicional o condicional intrinseco para ajustar los modelos espaciales. El ajuste de
los modelos espaciales bayesianos fue entre 35% y 55% mejor que el ajuste de modelos andlogos no espaciales.
Los modelos espaciales Bayesiamos funcionaron mejor que modelos andlogos desarrollados con métodos de
entropia maxima (Entmax). Aunque los mejores modelos espaciales y no espaciales incluyeron variables am-
bientales similares, los modelos espaciales proporcionaron estimaciones de los efectos espaciales residuales
que sugirieron como los procesos ecologicos pueden estructurar los patrones de distribucion. Los modelos
espaciales construidos con datos de presencia-ausencia mejoraron el ajuste para la mayoria de las espcies
endémicas con rangos de distribucion constrefiidos por factores biogeogridficos poco conocidos y para especies
ampliamente distribuidas que se sospecha son afectadas fuertemente por variables ambientales no medidas
o por procesos poblacionales. Al tratar los efectos espaciales como una variable de interés y no como una
molestia, los modelos espaciales Bayesianos jerdrquicos, especialmente cuando se basan en un entramado
espacial de escala comiin (aqui bexdgonos de 24 km? del Inventario y Andlisis Forestal nacional), pueden
incementar la relevancia de los modelos de hdbitat para la planificacion de la conservacion de miuiltiples
especies.

Palabras Clave: autocorrelacion espacial, autoregresivo condicional, dependencia espacial, especie focal,
Martes pennanti, modelo autoregresivo espacial, modelo bayesiano jerarquico, modelo de distribucion de es-

pecies, Plan Forestal Noroccidental

Introduction

Conservation planning and wildlife management increas-
ingly draw on models of habitat relations derived from
regional surveys of species occurrence to further under-
standing of a species’ ecology and the factors limiting its
distribution. Information from such models can also fa-
cilitate protection and enhancement of habitat, predict
distribution in unsurveyed areas, and help evaluate suit-
ability of currently unoccupied areas for reintroduction.
Nevertheless, commonly used statistical techniques such
as logistic regression may be poorly suited for developing
geographically extensive distribution models due to their
inadequate treatment of autocorrelation and other spatial
aspects of the data (Dormann et al. 2007).

Spatial autocorrelation is a pervasive characteristic of
data on species distributions because spatial autocorre-
lation of environmental factors and biological processes
frequently results in aggregated distributions of individu-
als (Clark 2007). Spatial structure linked to environmental
factors has been termed exogenous, induced, or extrin-
sic spatial effects. In contrast, endogenous, inherent, or
intrinsic spatial effects arise from population processes
such as dispersal and territoriality (Lichstein et al. 2002;
Wintle & Bardos 20006). Spatially autocorrelated data vi-
olate the assumption of independence in standard sta-
tistical tests, which can lead to inclusion of variables
with spuriously significant parameters (Dormann et al.
2007). This reduces the interpretability of model struc-
ture and parameters and limits prediction accuracy when
models are extrapolated to new regions or novel condi-
tions, such as future climates. Rather than pursue spa-
tial independence in survey data (e.g., through spatially
dispersed measurements), it may be more effective to
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use alternative statistical methods that can partition the
spatial component from the hypothesized environmen-
tal effects. This can increase the generality of the habitat
relations described in the model and providing insights
concerning the biological processes creating spatial de-
pendence and the scales at which they operate (Bolker
et al. 2009).

Faunal distribution models are commonly based on a
form of generalized linear model (GLM) (Bolker et al.
2009). For example, logistic regression models a binary
response (e.g., presence-absence) by means of a GLM
with the logit link. Diverse approaches have been used
to extend this approach to account for spatial autocor-
relation. One group of methods incorporates spatial ef-
fects as additional covariates within the model (Beale
et al. 2010). For example, trend-surface variables may be
derived from geographic coordinates to model spatially
extensive trends not explained by environment (Hain-
ing 2003). Simple autoregressive methods estimate spa-
tial effect through an additional covariate on the basis
of smoothed, observed occurrence values at neighboring
sites within a spatial neighborhood (Beale et al. 2010).
Because such models first estimate the spatial effect and
then the environmental effects, spatial structure in the
response data tends to be attributed to the spatial auto-
covariate and may thus underestimate the effect of envi-
ronmental variables (Dormann 2007a). Beale et al. (2010)
found that methods that model space as an additional co-
variate generally have poorer fit than those that model
space in the error or random-effect term.

Hierarchical Bayesian autoregressive models take the
approach of modeling space in the error term. These
models simultaneously produce estimates of environmen-
tal variables and spatial random effects, which allows
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the data themselves to determine the best placement of
spatial effects. This approach also allows better estima-
tion where response data are missing than is possible
with simple autoregressive methods (Gelman et al. 2004;
Latimer et al. 20006). Hierarchical spatial autoregressive
models, although usually intractable with standard sta-
tistical software, can be fit with Markov chain Monte
Carlo (MCMC) techniques (Spiegelhalter et al. 2003).
Non-Bayesian methods exist for the methods we con-
sidered but have not been widely tested (Bolker et al.
2009).

Bayesian spatial and nonspatial models built with ar-
tificial data sets (Wintle & Bardos 2006; Dormann et al.
2007; Beale et al. 2010) or plant survey data (Latimer
et al. 20006, 2009) have been compared previously. We
(1) further developed and applied such techniques to a
set of multispecies faunal survey data typical of regional
planning efforts, (2) evaluated whether the use of spa-
tial models alters model selection and prediction, (3)
explored the contrasts between models using extensive
covariates derived from geographic information systems
(GIS) and those using covariates measured in sparsely dis-
tributed plots, and (4) developed and contrasted exam-
ples of models for vertebrate and invertebrate taxa with
a range of dispersal abilities and territory sizes to assess
whether the utility of spatial models varies across spatial
scales.

Methods

Survey Data

We created and compared models for one invertebrate
and two vertebrate species of conservation concern (Car-
roll et al. 1999; Dunk et al. 2004; Dunk & Hawley 2009).
Arealimited vertebrates with specialized resource re-
quirements, such as the fisher (Martes pennanti paci-
fica), are a common focus of regional conservation plan-
ning and monitoring programs that collect extensive data
on a particular species’ occurrence (Carroll et al. 1999;
Davis et al. 2007). Less commonly, monitoring focuses
on a wider range of localized or poorly known taxa
(Molina et al. 2006). Survey data were collected under
the U.S. Northwest Forest Plan’s Survey and Manage pro-
gram (Molina et al. 20006) for two of the three species:
Church’s sideband snail (Monadenia churchi), which is
an endemic mollusk, and the red tree vole (Arborimus
longicaudus), which is a mammal with more extensive
geographic range than the snail but with a similarly lim-
ited territory size and dispersal capability (Dunk et al.
2004; Dunk & Hawley 2009). The three species (Fig. 1)
span several orders of magnitude of maximum dispersal
distance (<100 m for the snail to >30 km for the fisher)
and home range size (Dunk et al. 2004; Carroll et al.
1999).

Figure 1. Three species found in montane forests of
the Pacific Nortbwest and Sierra Nevada of the United
States whose distributions are analyzed in this study
(clockwise from left): Pacific fisher (Martes pennanti
pacifica), Church’s sideband snail (Monadenia
churchi), and red tree vole (Arborimus longicaudus).
Photo credits: Rebecca Green, Jeffrey Dunk, and Bert
Gildart, respectively.

We obtained distributional data for the fisher,
vole, and snail from previously conducted systematic
presence-absence surveys (Dunk et al. 2004; Davis et al.
2007; Dunk & Hawley 2009). Survey locations in those
studies were based on the sampling scheme of the na-
tional Forest Inventory and Analysis (FIA) or Continu-
ous Vegetation Survey (CVS) grid (Bechtold & Patterson
2005). For the fisher, we also obtained additional data
from previous nonsystematic surveys on private lands.
The FIA program regularly collects standardized vegeta-
tion data at one 1-ha plot within each hexagon of a grid
that has been delineated across the United States (see
Fig. 3 for an example of plot distribution). The current
(after 2001) FIA sampling grid contains hexagons of ap-
proximately 24 km? (Bechtold & Patterson 2005).

For species such as the vole and snail modeled rela-
tive to plot- or site-level covariates, we used surveys per-
formed at FIA/CVS plots to allow access to vegetation data
collected previously by the FIA program at these sam-
pled locations and at other FIA/CVS sites to which we
then could extrapolate the species distribution model.
For species such as the fisher whose distribution was
modeled as a function of covariates measured across the
landscape, the FIA hexagonal grid provided a spatial lat-
tice that facilitated parameterization of spatial neighbor-
hood effects, reduced problems with uneven sampling
intensity or survey effort, and reduced the number of
sample units (to <10,000) so that spatial modeling at re-
gional extents was computationally feasible. The size of
FIA hexagons is biologically relevant to territory size for
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the fisher (10-30 km?) and the landscape extent with
highest predictive power in previous analyses (Carroll
etal. 1999). Although our surveys conformed to standard
protocols designed to reduce the probability of false ab-
sence records, we did not have access to detection his-
tories from repeated surveys, either because sites had
been visited only once or data had been aggregated into
a single presence-absence record per site. Therefore, we
did not consider how detectability, as distinct from occur-
rence probability, varied across space and among species
(Webster et al. 2008). Further description of survey data
and protocols is given in Supporting Information.

Autoregressive Modeling

We applied two forms of spatial autoregressive models,
depending on the spatial extent and resolution of the
environmental covariates most relevant to the particular
species. Our landscape- and site-level models thus dif-
fered in both their model structure and environmental
covariates. We used landscape-level models to analyze
the relationship between the fisher and environmental
variables derived in a GIS. Distribution models for such
wide-ranging species typically have the highest predic-
tive power at or above the scale of the animal’s territory
(Carroll et al. 1999). Model predictions at this scale are
also relevant to regional conservation planning efforts
because they predict distribution seamlessly across the
entire landscape.

We adapted the modeling framework of Latimer et al.
(2006; their model 2). We overlaid a regular lattice of
cells (the FIA hexagons) on the study area and considered
each cell a sample unit that might contain a number of
survey locations. In our model, y;, the presence-absence
at site 7, was distributed as a binomial variable with prob-
ability p; = exp{n;}/( + exp{n;}), where n; = o +
Bixi; 4+ -+ + Bpxp: + pi. The variables xy;,. . ., x,; Were
site-specific environmental covariates, and the p, were
random effects that were jointly distributed as a Gaus-
sian CAR (conditional autoregressive) spatial model. The
CAR model was defined by the conditional normal dis-
tributions p;|p_; ~ N(W;, Gf), where p-; (spatial random
effect) is the vector of all p except the one for the ith
site:

¢ 2 1
W, = %;Mp/ and o = =y
n; is the number of cells in the neighborhood, N; of the
ith cell, and T represents the precision (inverse variance)
parameter.

The weight specification 1/n; in y; and o7 is termed
row standardized weighting (RSW) (see Supporting Infor-
mation for the code used to produce weight matrix). The
¢ parameter dictates the amount of spatial correlation
between spatial effects and lies in the interval [0, 1) for
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positive association. Typically values reside very near 1.
This observation motivated development of the intrinsic
CAR (ICAR) model, a form of the CAR model in which
¢ = 1 (Banerjee et al. 2004). Although the ICAR con-
ditional distributions do not specify a proper joint dis-
tribution (i.e., integrate to 1) for the p vector, the pa-
rameter and prediction posterior distributions are proper
(Banerjee et al. 2004). We compared ICAR models with
first-order (a cell and its six immediate neighbors),
second-order, and third-order neighborhoods.

Because models constructed with only landscape-level
variables generally have poor fit and predictive power for
localized low-vagility species, models for such species
typically are constructed with site-level environmental
variables (e.g., variables measured over a 1-ha FIA plot).
We followed the framework of previous non-Bayesian
habitat modeling for the vole and snail by building mod-
els from site-level environmental variables augmented
with relevant spatially extensive (e.g., climate) covariates
(Dunk et al. 2004; Dunk & Hawley 2009). We analyzed
these data with CAR models. Although in a strict sense,
CAR and ICAR models are applied most appropriately
to seamless lattices of cells, we applied the CAR frame-
work to model site-level responses that resemble the
point data typically analyzed with geostatistical models.
A CAR model can closely approximate continuous geo-
statistical processes and is much more computationally
efficient than a geostatistical model (Rue & Held 2005;
Webster et al. 2008; Ibanez et al. 2009), although recent
development of “spatial predictive process” models may
increase the computational feasibility of nonlattice-based
approaches for large data sets (Finley et al. 2007; Latimer
et al. 2009).

When environmental variables are measured at the
level of sites, and sampled sites are sparse or unevenly
distributed, distance between a site and its nearest neigh-
bors may vary widely. This suggests that site-level data,
in contrast to survey data summarized over larger sam-
ple units or cells, would benefit from the greater flexi-
bility of a CAR model in which weights can vary with
distance (Cressie 1993). We used CAR models with RSW,
however, which approximates the weight structure of
ICAR by assigning equal weights to all neighbors. In
exploratory analyses of our data, RSW offered better
model fit compared with more complex distance weight-
ing schemes. Different weighting schemes can be imple-
mented and compared with the code provided in Sup-
porting Information. We specified the neighborhoods N;
for the site-level data by defining a radius threshold of 6,
8, 14, 20, and 30 km centered around the ith site. We con-
sidered all the other sites within these radius neighbors
of the ith site. The sampling design based on FIA plots
separated by 5-6 km did not allow us to assess smaller
spatial neighborhoods.

We used the program WinBUGS (version 1.4.3;
Spiegelhalter et al. 2003) to fit ICAR models and
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their nonspatial generalized linear model analogues (see
Supporting Information for BUGS code). We used Open-
BUGS (version 3.0.3; Thomas et al. 2008) to fit CAR
models and their nonspatial generalized linear model
analogues. Both WinBUGS and OpenBUGS simulations
used three MCMC chains, each with a burn-in period of
10,000 iterations followed by 40,000 iterations for estima-
tion. We evaluated convergence with the Brooks-Gelman-
Rubin statistic (Spiegelhalter et al. 2003). We assumed
no preexisting knowledge of model parameters and thus
specified the least informative priors that allowed model
convergence (Supporting Information). To facilitate con-
vergence of model estimates, we standardized variables
by subtracting the mean and then dividing the mean by
2 SD (Gelman 2008).

Descriptions of Candidate Models by Species

We evaluated, through comparison with previously pub-
lished results, whether the use of spatial models altered
model selection and prediction. Therefore, rather than
explore the set of all possible candidate models, we de-
veloped a set of models for each species on the basis of
the best model identified in the publications from which
the data set was drawn. We compared this model with
alternate candidate models that we varied by assigning ei-
ther linear or quadratic terms to each variable or dropping
one or more variables. We thus evaluated whether addi-
tion of spatial random effects reduced the structure of the
environmental component of the best model. We evalu-
ated interaction terms only if they were present in the
published best model. This resulted in 13-15 candidate
models per species, depending on the number of vari-
ables in the published model (Supporting Information).
We identified the best spatial models with a two-step pro-
cess. First, we identified the best spatial neighborhood
size (scale) by comparing mean squared predictive error
(MSPE; see below) of the full model for a species across
a range of scales. Second, we identified the best of the
candidate models at the best scale.

For the snail, we developed 15 candidate models from
the best model of Dunk et al. (2004), which included
four covariates: mean diameter breast height (dbh) of
conifers, percent canopy cover of hardwoods, coefficient
of variation (cv) of December and July precipitation, and
an index of moisture stress that related summer temper-
ature and mean annual precipitation. For the vole, we
developed 14 candidate models from the best model of
Dunk and Hawley (2009), which included four indepen-
dent variables: percent slope, basal area of trees with
dbh between 45 and 90 cm, maximum tree dbh, and the
standard deviation (SD) of conifer dbh. For the fisher,
we built the candidate set of 13 models with seven vari-
ables identified in previous generalized linear or general-
ized additive habitat models (Carroll et al. 1999; Carroll
et al. 2001; Davis et al. 2007): tree canopy closure, tree

size class, annual snowfall, annual precipitation, terrain
ruggedness, summer tasseled-cap greenness, which is a
metric of primary productivity derived from satellite im-
agery, and a rating of fisher habitat quality derived from
the California Wildlife Habitat Relationships system.

We did not consider spatial trend-surface variables
(functions of the x and y coordinates) included in pub-
lished models (Dunk et al. 2004; Dunk & Hawley 2009)
because they would duplicate trends modeled within the
spatial random-effect term. Our nonspatial analogue mod-
els, which lacked both trend surfaces and spatial ran-
dom effects, should thus be seen as “naive” versions of
published nonspatial models for these species. To better
compare the performance of the CAR models with the
most commonly used alternative methods for analyzing
species’ distributional data, we also developed distribu-
tion models for the three species with Maxent (Phillips
et al. 2006; Phillips & Dudik 2008). Maxent estimates
probability distributions that are close to maximum en-
tropy or uniform given constraints derived from the pres-
ence data and functions of the environmental variables
(Phillips & Dudik 2008). Maxent performs well in com-
parison with 15 alternate methods on a wide variety of
taxa in diverse regions (Elith et al. 2006). Although Max-
ent typically is applied to presence-only data, it can be
applied to presence-absence data, as we did here, by bas-
ing the set of available habitat on the total set of sampled
locations (Phillips et al. 2009). We used the default Max-
ent setting, which allows flexible response forms such as
thresholds and hinge effects (Phillips & Dudik 2008). As
with the GLM and CAR models, however, we evaluated in
the Maxent analysis only those interaction effects present
in published models. We also summarized results from
previous studies of the three species with generalized
additive models (GAM) that contained spatial covariates
in the form of trend surfaces (Dunk et al. 2004; Dunk
and Hawley 2009) or a simple autoregressive term (Davis
et al. 2007).

Comparison of Models

We fitted candidate models and ranked competing mod-
els by their MSPE (Gelfand & Ghosh 1998). Although
deviance information criterion (DIC), a metric that iden-
tifies parsimonious models via a penalty term derived
from the number of model parameters, is the most com-
mon model diagnostic used to evaluate fit of Bayesian
models, its utility depends on the accuracy of its es-
timation of the effective number of parameters in the
model (pp) (Spiegelhalter et al. 2002; Gelman et al. 2004).
In cases in which DIC’s normality assumptions are vio-
lated, pp may be estimated as negative; thus, the DIC-
based model ranking is biased. In contrast, MSPE lacks
such assumptions. The MSPE evaluates a model on the
basis of its ability to accurately produce replicated data
similar to the data that were observed (Gelman et al.
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2004). Because more-complex models tend to produce
replicated data slightly more accurately, MSPE tends to
choose slightly more complex models than does DIC and
alternate, closely competing models are less differenti-
ated. Unlike DIC, MSPE does not explicitly penalize an
increasing number of model parameters. Nevertheless, as
model complexity becomes too great, the variability in
the replicated data becomes considerable which, in turn,
raises MSPE and reduces model rank. Thus MSPE and DIC-
based model rankings are often similar (Carroll & Johnson
2008).

Diagnostic metrics also have been developed for
Bayesian models, and they are based on comparisons
of observed responses with simulations of predicted re-
sponses (Gelman et al. 2004). We used the posterior pre-
dictive p value to evaluate the probability that the ob-
served and the predicted data were drawn from the same
distribution (Gelman et al. 2004). Similarly, we produced
a percent correct classification metric that we based
on the proportion of simulated responses matching ob-
served responses. We evaluated the difference between
spatial and nonspatial models with Spearman rank corre-
lation between predictions from the best spatial model
and its nonspatial analogue (corrs) and the percent re-
duction in MSPE from nonspatial to spatial models.

For spatial, nonspatial, and Maxent models, we evalu-
ated the AUC (area under the receiver-operating curve), a
threshold-independent metric used to evaluate a model’s
discriminatory ability (Swets 1988). The AUC ranges be-
tween 0.5 (for a model with performance equal to ran-
dom expectation) and 1.0 (for a model with perfect clas-
sification). To evaluate the potential for overfitting and
the sensitivity of model results to subsetting of the input
data, we used a cross-validation procedure that randomly
withheld 10% of the samples and evaluated the ability of
models developed from the remaining samples to predict
the data that were withheld. We repeated cross-validation
10 times for the best model for each species and reported
the mean of the resultant AUC values.

We compared general patterns in model results across
species, including the size of the spatial neighborhood
associated with the best model. We evaluated the sta-
tistical and ecological implications of differences among
the species in correlation between predictions of spatial
and nonspatial models. We evaluated the increase in fit
of the model (proportional reduction in MSPE) between
nonspatial and spatial models. For each species, we sum-
marized the structure of the best spatial and nonspatial
models. We described the spatial pattern of the random-
effect term. For the species modeled at the landscape
level, we described the spatial pattern of predicted prob-
ability on the basis of environmental effects alone (with-
out the p term). Evaluating predicted abundance without
the p term allowed us to assess the effects of predicted
species-environment relationships without the influence
of unmeasured environmental variables.
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Results

General Patterns

Across all species, models based on the smallest spatial
neighborhoods generally fit best (Fig. 2). Models based on
neighborhoods with an 8-km radius, the smallest evalu-
ated at the landscape level, performed best for the fisher.
Models based on neighborhoods with a 6-km radius, the
smallest evaluated in the site-level models, fit best for the
snail, whereas models with an 8-km neighborhood radius
fit best for the vole (Fig. 2).

Spatial models had better fit than nonspatial models
for all species (Table 1). The improvement in fit con-
ferred by the spatial model, as measured by the percent
reduction in MSPE from nonspatial to spatial models, was
35.3, 54.7, and 54.0 for the vole, the fisher, and the snail,
respectively (Fig. 2, Table 1). The correlation between
spatial and nonspatial model predictions generally paral-
leled the difference in fit between spatial and nonspatial
models (Table 1). Percent correct classification improved
from 70.4, 84.8, and 73.6% (nonspatial models) to 81.3,
91.8, and 88.3% (spatial models) for the vole, the fisher,
and the snail, respectively.

For all species, for both the full data set and cross-
validation runs, AUC values for the spatial models were
greater than AUC for the nonspatial or Maxent mod-
els (Table 1). Although posterior predictive p value for
both spatial and nonspatial models for all species sug-
gested that predicted and observed values were drawn
for the same distribution (i.e., the model was not over-fit)
(Table 1), contrast between AUC and CV AUC was greater
for spatial than for nonspatial models. Thus, the improve-
ment in AUC associated with use of spatial models was
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Figure 2. Improvement in model fit, as measured
by percent reduction in the MSPE (mean square
predictive error) diagnostic, of spatial models over
their nonspatial analogues for three species. Curves
are left-truncated at 6 km, the approximate mean
distance between survey locations.
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Table 1. Comparison across species of model performance and
difference between spatial and nonspatial models for red tree vole,
Pacific fisher, and Church’s sideband snail.”

Species
red Church’s
tree Pacific sideband
vole fisher snail
Model performance
nonspatial GLM
PCC 0.704 0.848 0.736
PPPV 0.432 0.494 0.448
spatial CAR
PCC 0.813 0.918 0.883
PPPV 0.529 0.558 0.518
correlation 0.843 0.596 0.528
MSPE reduction 35.26 54.70 53.95
Comparison of AUC
among methods
nonspatial GLM
full 0.814 0.720 0.746
Cv 0.783 0.724 0.690
spatial CAR
full 0.985 0.940 0.994
Ccv 0.807 0.851 0.863
maximum entropy (Maxent)
full 0.852 0.769 0.832
Ccv 0.783 0.741 0.774
GAM with spatial term
full 0.866°  0.96° 0.8447
cv 0.798"  0.86° 0.795¢

“The difference between spatial and nonspatial models was evalu-
ated with PCC (proportion correctly classified) and PPPV (posterior
predictive p value) statistics, the Spearman rank correlation between
predictions from the best spatial model and its nonspatial analogue,
and the percent reduction in MSPE (mean squared predictive error)
Jfrom nonspatial to spatial models. Model performance was also eval-
uated with the AUC (area under the receiver operating characteristic
curve) metric for the full data set and for data withbeld during 10-
Jfold cross-validation for nonspatial GLM (generalized linear model),
spatial CAR (conditional autorgressive model), and Maxent mod-
els and was compared with AUC reported in previous studies in
which GAM (generalized additive model) with spatial components
was used. Number of sampled sites or bexagons, n = 365, 993, and
308 for red tree vole (A. longicaudus), Pacific fisher (M. p. pacifica),
and Church’s sideband snail (M. churchi), respectively.

b Dunk and Hawley 2009.

¢ Davis et al. 2007 .

4 Dunk et al. 2004.

less pronounced under the cross-validation runs than
with the full data set. In Maxent models, AUC was in-
termediate between nonspatial and spatial models for all
species under both full and cross-validation runs.

Summary of Models

For the snail, a model with linear terms for three of four
variables (mean dbh of conifers, cv of December and
July precipitation, and moisture stress) and a quadratic
term for the remaining variable (percent canopy cover
of hardwoods) was the best spatial model. A model with
quadratic terms for three variables (mean dbh of conifers,
percent canopy cover of hardwoods, moisture stress) and

a linear term for cv of December and July precipitation
was the best nonspatial model (Supporting Information).
For the vole, a model with quadratic terms for all four
variables (percent slope, basal area of trees, maximum
tree dbh, SD of conifer dbh) had the lowest MSPE among
the candidate nonspatial models. The best spatial model
was similar to the best nonspatial model except with a
linear term on one variable (maximum tree dbh). For
the fisher, the best spatial model contained linear terms
for the variables tree canopy closure, greenness, and ter-
rain ruggedness and a quadratic term for annual snowfall.
The best nonspatial model was similar to the best spatial
model, but it had a linear term for snowfall. Generally,
spatial models and their nonspatial analogues had similar
ranks (Supporting Information).

The broad-scale pattern of spatial random effects was
relatively smooth (low rugosity) for the snail and the
fisher (Figs. 3a & 4a). Nevertheless, spatial random effects
were concentrated in a single population for the snail
and in two disjunct populations for the fisher. Greater
mesoscale variation in spatial random effects was evident
for the vole (Fig. 3b). For the fisher, the environmental
component from the selected model (without the spatial
random effects) predicted high habitat quality for a large
area in the northern Sierra Nevada (Fig. 4b).

Discussion

Biologists and managers who develop and apply habitat
models are often familiar with the statistical challenges
posed by their data’s spatial structure, but are unsure
whether more complex spatial models will increase the
utility of model results in planning (Beale et al. 2010).
We analyzed presence-absence data for three species
with different dispersal abilities and home range sizes,
using environmental variables measured at the level of
both landscapes and sites. Thus, our conclusions may
generalize across the spectrum of potential applications
of spatial models of habitat for faunal species and should
assist in deciding when to use spatial models, choosing
the appropriate model structure, and interpreting model
results.

Our results suggest that the computational time and
effort required to develop spatial models is often worth-
while because spatial models fit observed data better than
nonspatial models and allow greater insights than nonspa-
tial models into the spatial processes producing autocor-
relation in the data. For all species, for both the full data
set and cross-validation runs, model performance as mea-
sured by the AUC value was greater for spatial CAR mod-
els than for nonspatial logistic regression or maximum
entropy (Maxent) models. Nevertheless, differences be-
tween model performance under full and cross-validation
runs were greater for spatial than for nonspatial mod-
els, which suggests that results of spatial models may be
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models for those species (Table 1). Nevertheless, our
spatial model for the fisher had slightly worse perfor-
mance than a GAM model from a previous study that in-
corporated a simple autoregressive spatial term derived
from the smoothing of observed responses (Davis et al.

Figure 4. Pattern of (a) spatial

random effect, (b) predicted

: probability of occurrence without the

spatial random-effect term, and

| (o) predicted probability from best
spatial intrinsic conditional

. autogressive (ICAR) model for the

N Pacific fisher, a wide-ranging

species, in the California (U.S.A.).

Probability of occurrence was

modeled as a function of

landscape-level covariates.

(c)
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2007). Davis et al. (2007) constrained the simple autore-
gressive term to enter the model after the best environ-
mental variables had been identified, and used slightly
different fisher distribution data and cross-validation pro-
cedure than our study. Our results are consistent with
those from a recent review whose authors compared
methods using simulated spatially correlated data. The
review showed that methods with spatial effects in the
error term, such as the CAR and ICAR methods, gener-
ally performed better than models with spatial effect as
an additional covariate (such as spatial trend surface or
simple autoregressive methods) (Beale et al. 2010). GAM
performed best among the latter methods, however, and
both groups of spatial methods outperformed nonspatial
approaches (Beale et al. 2010).

Lack of explicit treatment of spatial structure may lead
to inclusion in the model of spurious environmental vari-
ables (Dormann et al. 2007; Dormann 2007b). In our re-
sults, the difference between the fit of analogous spatial
and nonspatial models lessened as models become more
complex (Supporting Information), which suggests that
a subset of the environmental covariates may be acting as
surrogate for spatial structure in the nonspatial models.
Our results also provide insights into the scale at which
spatial processes influence distribution (Fig. 2). For the
two species for which data allowed comparison of 6- and
8-km neighborhoods, the best models for the snail with
low dispersal ability were at a smaller neighborhood size
than the best models for the more vagile vole. Although
our results for the snail and the fisher allow for the pos-
sibility that finer-resolution sampling designs would sup-
port improved models, in regional monitoring programs
with limited resources the benefits of increased sampling
intensity must be balanced against decreases in the extent
of the region sampled. Our ICAR model results are con-
sistent with the results of previous studies, which found
first-order neighborhoods are often sufficient to account
for spatial structure in distribution data (Griffith 1996;
Kissling & Carl 2008).

The high rugosity of the spatial effect in models for
the vole (Fig. 3b) may have been due to mesoscale pro-
cesses such as dispersal limitation rather than spatially
extensive environmental effects. In contrast, the smooth-
ness of the pattern of spatial effect for the fisher (Fig. 4a)
may be due to unmeasured environmental variables or
population processes, but we cannot conclusively distin-
guish between these hypotheses. The pattern of spatial
effect for the fisher (Fig. 4a) closely resembles that of
a sympatric raptor of conservation concern, the Califor-
nia Spotted Owl (Strix occidentalis occidentalis), which
suggests the species are responding to a common unmea-
sured covariate (C. C., unpublished data).

Evaluating predicted occurrence without the p
term allowed us to assess the effects of predicted
species-environment relationships without the influence
of unmeasured environmental variables or population

processes. The environmental component of the best
model for the fisher identified a large area in the north-
ern Sierra Nevada as fisher habitat (Fig. 4b). If the spatial
random effects for the fisher can be attributed to pop-
ulation processes (home range clustering or dispersal
limitation), this area may be a potential reintroduction
site.

Extracting Ecological Hypotheses from Spatial Structure

Dormann (2007b) found that adding spatial effect to dis-
tribution models improved model fit in most contexts.
Our results suggest that spatial models are most useful
when either results of previous studies suggest strong
spatial patterns in residuals from nonspatial models, as
for the fisher (Carroll et al. 1999; Davis et al. 2007), or a
species occupies a small proportion of the analysis region
and its range boundary is complex, poorly known, or po-
tentially constrained by past geologic or climatic events,
as for the mollusk (Dunk et al. 2004). Spatial models are
less useful when the analysis, survey extent, or survey
data have been limited a priori to an area of relatively
uniform spatial random effects, such as a well-described
and cohesive range boundary.

Our results suggest that despite their greater computa-
tional cost, Bayesian spatial models perform better than
other approaches to spatial modeling. This was most
evident when we compare Bayesian methods to non-
autoregressive approaches, such as trend-surface mod-
els. Although trend-surface variables can represent broad-
scale spatial trends, their flexibility is limited to quadratic
or occasionally cubic surfaces. Thus, they cannot repre-
sent complex spatial-effect surfaces such as were shown
in our analyses of the vole (Fig. 3¢). More complex CAR
models derived from distance weighting can also be used
when they improve fit. In addition, CAR models, unlike
trend-surface or generalized additive models, allow quan-
titative estimates of the strength of the spatial association
with a single parameter (T). Although the survey data
we used were collected with a systematic sampling de-
sign, spatial autoregressive models may also aid analyses
of data with geographically uneven levels of survey effort
because such bias can be incorporated within the spatial
random-effect term, which reduces its influence on esti-
mates of the effects of environmental variables (Carroll &
Johnson 2008).

By treating spatial effects as a variable of interest
rather than a nuisance, hierarchical Bayesian spatial mod-
els can suggest the identity of additional environmen-
tal covariates that may improve model fit or the exis-
tence of area- and isolation effects that may limit pop-
ulation viability. Our results suggest that spatial models
developed at coarse resolutions (such as FIA hexagons)
are statistically and biologically relevant to processes in-
fluencing the distribution of diverse taxa. Standardizing
modeling efforts for multiple taxa to a common spatial
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lattice can help link regional-scale monitoring efforts and
increase the relevance of habitat models to multispecies
conservation planning.
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