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INTRODUCTION

Until recently, conservation planning in the United States has been species-based, due to
the prevalent interpretation of the Endangered Species Act and other legal mandates. Because
knowledge and resources are insufficient to manage for all species individually,
land-management agencies increasingly have advocated ecosystem-level regional planning, for
example in the Northwest Forest Plan (USDA and USDI 1994). Viability analysis of well-
selected focal species, however, can complement ecosystem-level conservation planning by
revealing subtle thresholds in habitat area and landscape connectivity. This allows us to evaluate
the effectiveness of conservation strategies in a way not possible with composite indicators of
ecosystem function.

 Although the concept of management indicator species, as often applied, has been
discredited (Landres et al. 1988, Noss 1990), the broader notion that the population status of a
species can be used to assess ecological integrity in conjunction with more integrative metrics
remains useful. Lambeck (1997) suggested linking species and ecosystem-based efforts by
focusing on a few focal species that are most sensitive to changes in key landscape processes. In
the Sierra Nevada region, as in the Pacific Northwest, the spotted owl (Strix occidentalis) and
other species associated with older forest have been the main foci of species-based conservation
planning (e.g. Verner et al. 1992). The California spotted owl (S. occidentalis occidentalis) falls
into three of Lambeck’s four categories of focal species: it is area-limited, with a mean home
range size of 20-50 km2, dispersal-limited across open habitat, and resource-limited by its
association with large trees (Verner et al. 1992).

Many potential focal species occur at low densities due to their high trophic position and
are secretive or nocturnal. This makes collecting accurate census data difficult and expensive.
Although planning for the owl benefits from the availability of long-term demographic data,
population indices from intensive demographic studies may provide ambiguous information on
declining viability without information on regional-scale trends in habitat (Doak 1995). 

Coordinated planning across multiple ownerships is necessary for insuring viability of
area-limited or wide-ranging species. However, although legal mandates have resulted in a
database on spotted owl distribution that is more complete than for most rare species, data
collection is primarily focused on federal lands with timber or other development activities. Our
knowledge of owl distribution and abundance in Forest Service roadless areas, national parks,
and private lands is still relatively poor. Empirical distribution models such as those developed
here are an important initial stage in development of a multi-ownership monitoring program that
can place habitat changes within the context of the regional metapopulation and form the basis
for multi-species conservation planning (Carroll et al. 1999b). However, initial models must be
seen as map-based hypotheses to be rigorously validated and refined with new field data
(Murphy and Noon 1992, Carroll et al. 1999a). Analysis of regional-scale constraints should be
followed by incorporation of progressively finer-scale factors. No one scale of analysis is likely
to be sufficient (Noss 1990, Holling 1992, Peterson et al. 1998).

To build models of species distribution that are generalizable across the entire study
region, a geographically-extensive data set of species occurrences is required. Ideally, such data
are collected  through standardized systematic surveys. Nevertheless, such efforts only have
recently begun as part of agency monitoring efforts. “Found” distributional data sets, such as
sightings data, are less useful for modeling because of bias in sampling effort and lack of
verifiability. The owl distribution data used here, although greatly superior to most sightings or
occurrence data sets, nevertheless show strong sampling bias that must be evaluated during the
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analysis process. The GIS habitat data are also inconsistent in quality and format across
management categories. Despite these problems, regional habitat models can provide initial
estimates of species distribution and abundance as averaged over coarse spatial (watershed) and
temporal (decadal) scales.

 A lack of accurate maps of habitat quality often limits more complex dynamic modeling
approaches, such as individual-based models. The use of a simple binary (suitable/non-suitable)
habitat classification obscures the effects on connectivity of the landscape mosaic as a whole
(Wiens 1997). Regional-scale empirical models often suggest habitat factors not evident from
intensive field studies and can provide such data as habitat patch size or potential dispersal
frequency for parameterizing dynamic models. Although the models reported here do not
directly address area and connectivity factors, they can form the foundation for development of
dynamic species viability models (e.g. Noon and McKelvey 1996a,b, Akçakaya and Raphael
1998, Schumaker 1998).
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METHODS

STUDY AREA

The study area covers 93,000 km2 in the Sierra Nevada mountains of California (figure
4). Its southern, western, and eastern boundaries were defined by those of the Sierra Nevada
Ecosystem Project study boundary (SNEP 1996), while the northern boundary was defined by
the boundary between the northern spotted owl (Strix occidentalis caurina) and California
spotted owl subspecies as defined in the owl location database (California Dept. of Fish and
Game, unpublished data). Mean elevation is 1600 m, ranging from sea level to over 4000 m.
Climate is mediterranean, with most precipitation occurring in the winter months. Major
vegetation types include oak woodlands, mixed coniferous forest, and alpine vegetation (Rundel
et al. 1995). Land ownership is approximately 59% federal (51% Forest Service and 8% National
Park Service) and 41% private.

SPECIES DISTRIBUTION DATA

Data on the locations of territories of California spotted owls were provided by the
California Department of Fish and Game, which maintains a database of records submitted by
agencies and private landowners. Department biologists classified 23,870 reported locations of
owl observations into 2141 owl territory locations, of which 1707 fell within the Sierra Nevada
study area boundary. Territories were reported primarily on Forest Service lands (81.2%), as
well as in national parks (7.6%), and private land (9.8%). Occupancy status of locations was
classified as by an owl pair (61.0%), territorial single (19.0%), or single owl (20.0%). Data on
reproductive status by year is also given. Observations are primarily from the period 1991-1996
(74.1%), with 20.1% dating from 1987-1990, and 5.7% from before 1987.

HABITAT DATA

The habitat variables were developed in a GIS format (Table 1). They can be grouped
into the five categories of vegetation, satellite imagery metrics, topography, climate, and human-
impact related variables.

Vegetation variables were derived from GIS vegetation layers developed from supervised
classification of Landsat Thematic imagery by the Remote Sensing Laboratory of USDA Forest
Service Region 5 (USDA Forest Service, unpublished data). These included percent tree canopy
closure, and tree size class as defined by the California Wildlife Habitat Relationships (CWHR)
system (Mayer and Laudenslayer 1988). CWHR vegetation cover type classes were given
approximate habitat values for the owl based on the average CWHR habitat index value for all
size and closure classes of that cover type. This simplification of the CWHR system was used to
take advantage of seamless cover type data developed for the study area from Forest Service,
California Dept. of Forestry, and USGS BRD Gap Analysis Project data (L. Levien, unpublished
data).

Imagery-derived vegetation mapping with attributes other than cover type is not yet
available for non-Forest Service portions of the study area. I used imagery-based metrics to
develop models that were not limited by the extent of the vegetation data, but that could be
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applied to the entire study area. “Pseudo-habitat” variables derived directly from unclassified
satellite imagery are correlated to varying degrees with ecological factors such as net primary
productivity and green phytomass (Cihlar et al. 1991, Merrill et al.1993, White et al. 1997) and
have proved useful in modeling wildlife distributions (Mace et al. 1999). Vegetation variables
and imagery metrics such as tasseled-cap greenness may be expected to be correlated with
abundance of prey species through their relationships to primary productivity. However the
relationship between such variables and productivity is weakened by phenological variation
between years and spatial variation in percent bare ground and percent dry biomass (Merrill et
al. 1993).

I acquired Landsat TM imagery spanning a seasonal range of 20 June to 3 September for
the years 1989 to 1991. Images for 1996 were also available, but were less contemporaneous
with the majority of owl locations. I derived from TM imagery the tasseled-cap indices of
brightness, greenness, and wetness (Crist and Cicone 1984), and the modified Normalized
Difference Vegetation Index (NDVI) (Nemani et al. 1993). The second source of imagery, the
Advanced Very High Resolution Radiometer (AVHRR) sensor, has low spatial and spectral
resolution compared with the Landsat TM sensor (Eidenshink 1992). Its daily temporal
resolution, however, may allow improved estimation of ecological factors that show seasonal
variation. Maximum daily NDVI values from the AVHRR sensor were acquired for the entire
study area for each month in 1995 (James and Kalluri 1993).

I derived topographic variables from a digital elevation model assembled at 90 m
resolution (USGS, unpublished data).  A topographic complexity variable was derived by
combining the values for aspect curvature and slope (ESRI, Inc. 1998). High values of this
variable indicate steep or irregular terrain. A cosine transformation was used to convert aspect to
a variable that ranged from zero on most-exposed (SW) aspects to 2.0 on least-exposed (NE)
aspects (Beers et al. 1966).

I acquired climatic data for mean annual precipitation and mean annual snowfall (1961-
1990) at approximately 2-km resolution (Daly et al. 1994). These climatic data were derived
from meteorological records and elevation data by means of the PRISM model (Daly et al.
1994).

Variables that may serve as surrogates for the effects of humans on wildlife at the
regional scale include road density and human population density (Mladenoff et al. 1995, Merrill
et al. 1999). GIS data on roads, trails, and railroads were assembled for the study area and
grouped into classes based on degree of expected use. Road density calculations, performed at a
1-km resolution, incorporated weights based on this classification, with highways weighted two
to three times the weight of unpaved roads. I rated trails and other routes at 0.35 that of unpaved
roads (Merrill et al. 1999). Road data, which was available for the entire study area at the
1:100,000 scale, is conservative in that it underestimates road density by approximately 30%
when compared with 1:24,000 scale data (C. Carroll, unpublished data).

I acquired data on human population at the scale of census blocks. The average area of a
census block in this region is 400 ha. A data layer representing all population centers as points
was interpolated using an inverse distance weighting algorithm (ESRI, Inc. 1998). This provides
an approximation of the effects of population centers over distance, for example as it might
affect levels of recreational use of public lands (Merrill et al. 1999).
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Table 1. Data layers evaluated in the development of the California spotted owl distribution
models for the Sierra Nevada.

Data Layer Resolution Source
Vegetation variables
Tree canopy closure 100 m USDA R5 Remote Sensing Lab
Tree size class 100 m                       "    
CWHR owl habitat value $100 m  "    
Satellite imagery metrics 
Average daily NDVI 1 km EROS Data Center
Modified NDVI 30 m USDA R5 Remote Sensing Lab
Brightness 30 m "    
Greenness 30 m                      "     
Wetness 30m                      "     
Topographic variables
Elevation 90m SNEP, USGS
Slope 90m "     
Transformed macroaspect 90m "     
Topographic complexity 90m             "     
Climatic variables
Average annual precipitation 2 km OCS
Average annual snowfall 2 km OCS
Human-impact associated variables
Human population density 2 km CIESIN
Interpolated human population    

density 1:100,000 USGS
Road density 1:100,00 USGS

Source abbreviations:
CIESIN - Center for International Earth Science Information Network
OCS - Oregon Climate Survey
SNEP - Sierra Nevada Ecosystem Project
USGS - US Geological Survey 
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MODEL DEVELOPMENT

I used multiple logistic regression to compare habitat variables at territory locations with
those at random points (Hosmer and Lemershow 1989). Before building the multivariate models,
I conducted exploratory analysis of univariate relationships between potential predictor variables
and the occurrence data using non-parametric significance tests and generalized additive
modeling (Hastie 1993). Generalized additive modeling plots were used to assess curvature and
thresholds in the univariate models. A large set of alternate multivariate models was constructed
and evaluated with the Bayesian Information Criterion (BIC), a diagnostic statistic that penalizes
for overfitting (Schwarz 1978). I allowed models to contain variables that did not appear highly
significant in univariate tests if this resulted in lower BIC values. I also considered
interpretability and field knowledge of the species when choosing among competing models that
had similar BIC values. The percentage of variance explained by the model was assessed with
Somers’ Dxy and R2 values (Harrell et al. 1996). Because many candidate models were
considered, the multivariate analysis should be considered exploratory.

The spatial correlation structure of wildlife distribution data can be modeled as a
combination of coarse-scale trend and mesoscale variation (Bailey and Gatrell 1995). Trend
surface variables derived from geographic coordinates were incorporated into the models.
However, since the standard north-south and east-west coordinate axes are arbitrary in
orientation when compared with the orientation of distribution trends, I rotated coordinate axes
by 30 degrees so that they became parallel (rotated UTM northing) and perpendicular (rotated
UTM easting) to the Sierra range. I modeled mesoscale environmental covariates with a moving-
average function that assigns to each cell the mean value of the attributes within a surrounding
circular moving window (Haining 1990, ESRI, Inc. 1998). Models including attributes at a
resolution of 0.1 km2, and with attributes derived from moving windows of 1 km2, 3 km2, and 30
km2 were compared to assess the relative predictive power of habitat associations at different
scales.

Potential variables were also assessed with resampling validation of the candidate logistic
regression models using backward step-down variable deletion and 100 bootstrap replications.
The fit of the final model was assessed with calibration (ROC) curves.

I used the coefficients from the final multivariate model to calculate a resource selection
function (RSF)  w(x)  for used (occurrences) and available (random) resources (Manly et al.
1993, Boyce and McDonald 1999), using the equation: 

w(x)  =  exp( )β β β1 1 2 2x x xi i+ + +...
Because the number of used versus unused resource units is not known, the RSFs

represent only a relative probability of occurrence of a species at a location (Manly 1993). I
therefore map the resulting RSF values as quantiles (e.g., most suitable decile of study area)
rather than actual values. 

GIS maps derived from extrapolation of the final multivariate models were compared
with maps of land ownership and management categories, late-successional/old-growth (LSOG)
rankings developed during the SNEP study (Franklin and Fites-Kauffman 1996), and Areas of
Late-Successional Emphasis (ALSE) developed from LSOG rankings and conservation planning
principles (Franklin et al. 1996).
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RESULTS

UNIVARIATE ANALYSIS

The univariate generalized additive models for rotated UTM easting, rotated UTM
northing, slope, and snowfall suggested quadratic curvatures in these variables. GAM results
suggested that probability of occurrences was reduced for below a road density threshold of
approximately 0.6 km/km2. High levels of rank correlation (greater than 0.80) were evident
between several potential predictor variables at the 1 km2 scale: elevation and snow (rs =  0.82),
the satellite imagery metrics of brightness, greenness, wetness, and modified NDVI (rs absolute
values of 0.76 to 0.90), and especially tree canopy closure and tree size class (rs = 0.94). GAM
plots for road density, CWHR value, tree canopy closure, and tree size class are shown in figure
1.

MULTIVARIATE MODELS

Coefficients, standard errors, and significance values for the selected model are reported
in Table 2. Cross-validation results generally provided clear support for selection of one of a pair
of strongly correlated variables (e.g., snow over elevation, modified NDVI over greenness).
However, transformed aspect as a quadratic function was included in some alternate models with
BIC values similar to the final model. The final model for all land ownerships included variables
representing rotated UTM easting, rotated UTM northing, slope, and snowfall as quadratic
functions, brightness, wetness, modified NDVI, and CWHR owl habitat value as linear
functions, a variable for the low road density threshold (< 0.6 km/km2), and an interaction term
for CWHR owl habitat value with wetness (n = 8025 [1705 nest sites, 6320 random], -2LL =
5141.37, P2 = 3159.68, df = 14, p = 0.000, Dxy = 0.763, R2 = 0.485).

Inclusion of variables only available for Forest Service lands, with resultant reduction in
sample size, resulted in a model with the addition of tree canopy closure as a linear function, and
the removal of brightness and modified NDVI (n = 4621 [1571 nest sites, 3050 random], -2LL =
4491.62, P2 = 1432.64, df = 13, p = 0.000, Dxy = 0.595, R2 = 0.348). This model was a slight
improvement upon a model for points on Forest Service lands that contained only the variables
included in the general model (-2LL = 4529.15, P2 = 1395.12, df = 14, p = 0.000, Dxy = 0.584,
R2 = 0.341). Despite the significant positive univariate association between owl locations and
tree size class, (rs = 0.33, p < 0.001 ), the high correlation of size class with tree canopy closure
resulted in its exclusion from parsimonious multivariate models. 

A comparison of models across scales suggest that the model with highest predictive
power incorporates variables averaged over a “landscape” of approximately 1 km2 (figure 2).
Models without the trend surface variables showed BIC values that were poorer by 85 to 154,
depending on scale, with finer-scale models showing the largest discrepancy (figure 2). The
calibration curve shows the final model to be well-calibrated at most probability levels, with
some over prediction at the highest probability levels (figure 3). 

Comparisons of model predictions with land management categories are shown in table
3. RSF values were derived here without including the effects of the road density threshold,
which  was judged to be an artifact of reduced observer effort in non-roaded areas, a common
bias in sightings and other “found” data that obscures potential relationships between species
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distribution and lower levels of road density (Carroll et al. 1999b). Non-reserved Forest service
lands have the highest mean quantile of predicted habitat value (65.57), followed by national
parks (55.77), Forest Service wilderness (46.58), and non-federal lands (35.65). Areas of Late-
Successional Emphasis (ALSE) show higher mean quantiles (81.87) than non-ALSE’s (54.66) or
areas not considered in the ALSE planning process (35.72). Predicted habitat value at random
points is highly correlated with SNEP late-successional/old-growth (LSOG) ratings (n = 3974, rs
= 0.565, p < 0.001)(table 3).
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Table 2. Variables contained in multiple logistic regression model showing coefficients, standard
errors, and significance values from the Wald test.

Variable Coefficient   Standard error t value p
Intercept -7.0835 0.6923            -10.2317        <0.0001
Rotated UTME  9.3041*10-5 1.0906*10-5    8.5310        <0.0001
Rotated UTME(quadratic) -5.2367*10-10 6.1151*10-11   -8.5635       <0.0001
Rotated UTMN  2.4177*10-6 8.9637*10-7      2.6972         0.0070
Rotated UTMN(quadratic) -5.6902*10-12 1.1288*10-12        -5.0410        <0.0001
Slope  0.3384 0.0287  11.7998        <0.0001
Slope(quadratic) -0.0106 9.4837*10-4 -11.2188        <0.0001
Snowfall(mm)  2.5356*10-4 7.5932*10-5    3.3393

0.0008
Snow(quadratic) -5.2587*10-8 1.1001*10-8    -4.7803        <0.0001
Low road density threshold -1.3374 0.1597   -8.3748       <0.0001
Brightness -0.0195 3.2218*10-3   -6.0454       <0.0001
Wetness  0.1505 0.0129  11.6825        <0.0001
CWHR value  1.4112 0.1130  12.4931        <0.0001
Modified NDVI  1.0156*10-3 3.3121*10-4    3.0663 0.0022
Wetness*CWHR value -0.0808 9.5578*10-3    -8.4582       <0.0001

Table 3. Comparison of mean quantiles of owl distribution model output with categories of land
management and SNEP late-successional/old-growth classification and Area of Late-
Successional Emphasis (ALSE) status..

Percent area Mean quantile
Land management category
Non-federal 40.62 35.65
Non-reserved Forest Service 40.02 65.57
Forest Service wilderness 11.15 46.58
National Parks   8.21 55.77

SNEP LSOG ranking
0 22.99 37.94
1 19.70 49.97
2 28.76 66.82
3 20.30 74.30
4   6.11 81.89
5   2.14 88.26

ALSE status
Not mapped 39.61 35.72
Non-ALSE 49.07 54.66
ALSE 11.32 81.87
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Figure 1. Generalized additive modeling (GAM) plots showing the univariate
relationship between owl distribution and the four variables of road density,
CWHR owl habitat value, canopy closure, and tree size class.
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Figure 4. Distribution of the California spotted owl as predicted by a resource
selection function (RSF).
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Figure 5. Detail of predicted owl habitat for area southeast of Yosemite National Park. Note
sampling bias against national park, private, and unroaded habitat.
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DISCUSSION

The high level of significance shown by the model suggests that regional-scale empirical
models can reveal important factors associated with the distribution of the California spotted
owl. Interpretation of model results contributes to constructing new hypotheses regarding
specific limiting factors governing distributional patterns. Equally important, model predictions
allow map-based conservation planning at a spatial scale relevant to the population processes of
wide-ranging species and allow initial plans to be iteratively refined as new data become
available. The large amount of unexplained variance in our analysis suggests that regional-scale
models alone are not sufficient for the development of detailed conservation plans. Conversely,
the models reveal factors not evident at finer scales. Given the sampling bias inherent in found
data sets, a large proportion of unexplained variance is probably unavoidable. Historical effects
and stochastic variability in habitat occupancy unrelated to the current habitat pattern will
determine some proportion of the variation in the distribution and abundance of a species. Our
analysis also does not attempt to quantify the relationships between probability of occurrence
and population density or between density and individual survival and reproduction (Van Horne
1983). 

The degree of model fit as measured by Somer’s Dxy (0.763), is higher than that reported
for a grizzly bear model (Merrill et al. 1999) and fisher (Martes pennanti), lynx (Lynx
canadensis), and wolverine (Gulo gulo) models derived from sightings data (Carroll et al.
1999b), and for a fisher model derived from presence-absence survey data (Carroll et al. 1999a).
The significance of the low road density threshold and visual examination of patterns of
predicted habitat and reported territories suggest that survey effort is biased both by jurisdiction
and by access constraints (figure 5). However, it does not appear that the model’s significance
arises primarily from predicting where survey effort has occurred rather than where owls are
located. A model developed using only data from Forest Service lands was similar to that
developed for all ownerships, although of lower predictive power (Dxy = 0.584). Sampling bias
weakens the power to detect species/habitat associations, but initial models can help inform the
development of more rigorous monitoring programs.

INTERPRETATION OF MODEL ATTRIBUTES

The tasseled-cap index of brightness and wetness appear to be important correlates of
owl distribution. Interpretation of changes in tasseled-cap indices is complex due to variation
between cover types classes (e.g., forest versus grassland) and topography. Forest stands may
first increase and then decrease along the tasseled-cap axes as they age. Brightness often
corresponds to the amount and reflectivity of exposed soil. The closed-conifer cover type as a
whole generally has higher wetness values than non-forested cover types. Within the closed-
conifer type, wetness is often highest in young conifer stands, with hardwoods and older conifers
having lower wetness (Cohen et al. 1995). Wetness was the single best predictor of forest age in
Pacific Northwest conifer forests (Cohen et al. 1995). The positive main effect of wetness in our
model, combined with the negative interaction term with CWHR value, is consistent with these
earlier findings, because CWHR value is high in conifer and mixed-conifer/hardwood types.

The replacement of brightness and modified NDVI by tree canopy closure in the alternate
model is consistent with the relationship between brightness and exposed soil, as well as the
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correlation between canopy closure and forest productivity as measured by metrics such as
NDVI. Low to mid-elevation forest with high levels of canopy closure have been found to be
valuable habitat for many species of concern such as the fisher (Carroll et al. 1999a). Although
the interpretability of models containing variables such as canopy closure and tree size class is
higher than for those using tasseled-cap attributes, it is encouraging that the general model, when
applied to Forest Service lands only, has predictive power close to that of the model using
detailed vegetation attributes (Dxy of 0.584 versus 0.595).

The significance of snowfall may be related to direct climatic effects on owl survival and
fecundity or to its value as a surrogate for climatically-induced gradients in vegetation and prey
communities. Temporal trends in climate variables affect demographic rates in the northern
(Franklin et al. in press) and Mexican spotted owl (Strix occidentalis lucida) (Seamans et al.
1999), and spatial trends in climate variables likely play an equally important role. The
significance of slope may be due to correlations between topography and site productivity or
microclimatic conditions.

Significance of trend surface variables, such as the rotated UTM coordinates used here, 
has been attributed to barriers to dispersal (Gates et al. 1994) or intraspecific interactions
(Periera & Itami 1991). Population-level processes such as source-sink dynamics may confound
effects of local habitat selection (Pulliam 1988). This significance may also be due to the effect
of unmeasured coarse-scale covariates such as changes in prey community composition. Strong
regional-scale trends have been evident in previous studies of other wide-ranging focal species
such as the fisher (Carroll et al. 1999a) and American marten (Martes americana) (Chapin et al.
1998).

The strong correlation of predicted owl habitat with LSOG supports the use of empirical
models as a complement to efforts such as the SNEP LSOG analysis. While the SNEP data
provides detailed information on vegetation structural attributes, empirical species models can
provide greater replicability over time and over multiple ownerships. 

The large role that non-reserved forest lands play in insuring owl viability is highlighted
by their higher habitat value in our analysis (table 3), even after partially accounting for lower
survey effort in parks and wilderness. This is similar to results of a fisher distribution model for
northwestern California that found habitat in late-seral reserves (LSR) to be of higher value than
that in wilderness areas. However, significant owl habitat is present in the low to mid-elevation
portions of Sierran parks and wilderness areas (figures 4 and 5), and model results may help
prioritize survey effort in these areas. The map of predicted owl distribution (figure 4) provides a
more detailed view of the range discontinuities or areas of concern noted in Beck and Gould
(1992: figure 3A). Although habitat appears relatively continuous at the scale of the entire range
(figure 4), discontinuities due to topography and timber extraction become more evident at finer
scales (figure 5).

In contrast to previous work with the fisher, species/habitat associations for the owl
appear to be strongest at the scale of the nest stand. Given the imprecision inherent in model
comparisons, results reported here, which suggest greatest predictive power at the 1 km2 level,
are slightly smaller in scale but broadly consistent with earlier results from studies of the
northern spotted owl (Strix occidentalis caurina) suggesting strong associations at the 3 km2

(Meyer et al. 1998) and 6 km2 level (Ramsey et al. 1994). Because the model structure used here
includes trend surface variables, scale of selection would be biased downward. Scale of selection
in the owl does appear significantly smaller than that found for the fisher in northwestern
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California (10-30  km2). This may be due to the greater biological significance of nest sites as
opposed to fisher foraging locations recorded at sooted track plates. It may also arise from
differences in the processes, such as dispersal limitation, that influence spatial population
structure in non-volant versus volant animals. This contrast in scale, even between species that
share common associations with mid-elevation productive forest, highlights the challenges
inherent in multi-species conservation planning.

FUTURE RESEARCH NEEDS

Due to funding limitations, this analysis has been limited to an exploration of the utility
of an approach that combines found distributional data with regional-scale habitat attributes.
Before these results can be used in planning for species viability, the owl location database
should be subjected to a more extensive analysis of sampling bias and its effects on model
predictions. The information on reproductive status by year contained in the database should be
explored for potential correlations with habitat attributes. Habitat variables that affect
reproductive status may differ from those associated with adult survival or distribution (Seamans
et al. 1999, Franklin et al. in press). Cross-scale comparison of results with more detailed data
from demographic study areas would provide further insights. Development of similar empirical
models for other sympatric species of concern, such as the fisher, and use of model predictions in
dynamic viability models may offer significant new insights to help create a comprehensive
conservation strategy for the Sierra Nevada region.
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